Welcome!

Java IoT Authors: Liz McMillan, Elizabeth White, AppDynamics Blog, Akhil Sahai, SmartBear Blog

Related Topics: Industrial IoT, @CloudExpo, Cloud Security

Industrial IoT: Article

Combining the Cloud with the Computing: Application Delivery Networks

What new challenges does Cloud Computing present for the enterprise?

IT executives are being asked to increasingly evaluate new cloud-based services to improve business agility while lowering operating and capital costs within the enterprise. Yet often very little is known about the “cloud” itself. How does it work? What new challenges does it present for the enterprise?

While cloud vendors continue to roll-out new technology to capture the imagination of application development and IT organizations – one area continues to remain noticeably cloudy and overlooked – the cloud itself.

The first of the two words in cloud computing is often not well understood. It’s almost always drawn very minuscule in pictures while dwarfed by the virtualized server farms providing on-demand computing power. Implying as if the cloud is secondary and works in a simple way – something goes in one side of the cloud and then shows up instantaneously on the other side. Or perhaps it’s a control issue – after all, the cloud is seemingly outside of the data-center beyond direct control of IT...or is it?

In order for cloud computing to realize its full potential and become commonplace for a range of business processes and applications within the enterprise the cloud itself needs to be treated equally as important as the computing aspect. The two must go hand-in-hand. For decades, enterprises have grown accustomed to private IP-VPN services such as MPLS offered by network providers. Such services offer high degrees of uptime, low latency and packet loss guarantees, and a sole point of escalation for problem resolution. Yet the on-demand accessibility promised by cloud computing services are best fulfilled when any type of user can access applications – anywhere in the world, and at any time thru a common interface such as a Web browser. And it simply isn’t possible to run private IP-VPN services to everywhere application users have access to a Web-browser. As a result, the Internet is more often than not the de facto cloud used to fulfill the ubiquitous reach and economies of scale necessitated by on-demand cloud applications.

Herein lies the challenge. The Internet cloud is not like a private network offered by a service provider. The Internet is a network-of-networks, consisting of over ten thousand individual network providers. And unlike traffic carried within a private-WAN, not all networks are economically motivated to carry the bulk of Internet traffic generated by an on-demand cloud computing service. The first-mile provider offering bandwidth for the data-center and the last-mile access provider are the two providers who directly get paid to connect the user to the application. All other Internet network providers have little economic incentive to exchange and deliver traffic and apply sub-optimal, unreliable relationships called peering. Peering relationships manifest themselves by adding extra round-trip latency and packet loss by way of the Border Gateway Protocol (BGP) which is used to route application requests thru the cloud between application users and the infrastructure1. Yet any latency or service interruption, whether caused by either the computing infrastructure or the cloud, degrades user experience and can damage customer satisfaction resulting in abandonment issues and low adoption of cloud computing services.

To make matters even worse, other protocols used to govern Web application delivery such as the chatty TCP protocol for transport and HTTP for applications introduce new application delivery bottlenecks for distributed users of on-demand cloud based applications. Users far away from computing infrastructure will experience slower response times and worse availability than those users close to the resources. And the Internet opens new security vulnerabilities ranging from Domain Name Server (DNS) and distributed denial-of-service (DDoS) attacks to more advanced malicious activities exposing application-specific vulnerabilities.

The challenges associated with the Internet cloud are very real. What happens to application adoption when one user gets a 5-10x slower application response time than another, merely because of their increased distance from computing servers? What if applications are unavailable due to issues associated with the Internet itself such as congestion, de-peering, cable cuts or earthquakes? What happens if your in-cloud application is attacked by Internet hackers? As evidenced by a recent State of the Internet Report2, attack traffic on the Internet was originated in over 139 unique countries. Over 400 unique ports were attacked, a twenty fold increase from just the prior quarter. DDoS attacks continued to exploit tactics that were identified years ago along with numerous high-visibility DNS hijackings. Network and routing outages remain commonplace. And Website and application hacks, such as SQL injections and cross-site scripting (XSS) attacks have infected hundreds of thousands of Web properties. It is clear the Internet must transform into a predictable, reliable application delivery platform suitable for business use to fulfill the promise of cloud computing within the enterprise.

Cloud computing providers need a strategy for optimizing the cloud for their on-demand applications and computing services on a global scale, while remaining as cost-effective as possible, in order to survive what is undoubtedly becoming increasingly competitive environment. At the same time, they are pressured to ensure their infrastructure can cope with a rapidly escalating volume of data and shield users from in-the-cloud bottlenecks outside of the data-center. For this reason, they are increasingly reliant on proven third-party providers for the reliable and cost-effective delivery of on-demand content and applications in the cloud in to solidify their position in this rapidly evolving and promising market.

One way of optimizing delivery over the Internet cloud has been thru next-generation content delivery network (CDN) providers. To enable on-demand cloud computing services, however, such providers must transcend far beyond traditional CDN capabilities to address the fact that rich interactive websites and enterprise applications aren’t generally cacheable like a large media file or image. Dynamic content requires new application delivery optimizations addressing routing, transport and application layer protocol inefficiencies introduced by the Internet cloud for effective delivery. Such optimizations allow globally distributed users to feel as though they are close to centralized computing resources, regardless of their distance from the infrastructure, while addressing other key availability, security and scalability bottlenecks associated with Internet-based application delivery.

Next-generation CDN providers incorporate tens of thousands of distributed computing servers across the globe at the edge of the Internet, within one network hop away from both application infrastructure and the vast majority of the world’s Internet users. In essence, this creates a distributed global “overlay” of the Internet serving as the foundation for powering a better Internet experience. Thru software written on the platform, the application of a sophisticated set of algorithms and knowledge of real-time Internet conditions are applied towards accelerating content goes well beyond static caching and traditional CDN capabilities to optimize application delivery bottlenecks for fully dynamic, on-demand applications. Essentially, these services leverage their own optimized protocols to optimize the distance induced performance and availability challenges introduced by BGP, TCP and HTTP protocols. Next-generation CDN services, often referred to as “Application Delivery Networks” (ADN), improve the delivery of dynamic content in the Internet cloud, without the use of any additional hardware, new software or application code changes for any application user accessing an application over the Internet cloud. The operation of an ADN is described and illustrated in Figure1.

1. A dynamic mapping system based on DNS directs user requests for secure application content to an optimal edge server.

2. Malicious activity can be blocked at the edge of the Internet, outside the data-center, through a set of configurable rules

3. Dynamic route optimization technology identifies the fastest and most reliable path back to the origin infrastructure to retrieve dynamic application content.

4. A high-performance transport protocol transparently optimizes communication throughput between edge server and the origin, improving performance and reliability. 5. The edge server retrieves the requested application content and returns it to the user over secure optimized connections. Static and pre-fetched content leverages edge proximity to speed delivery when possible.

Figure 1 – How an Application Delivery Network (ADN) works

Providers of on-demand computing resources and applications leveraging ADN technologies benefit by keeping data-center build-out to a minimum while simultaneously addressing Internet delivery issues. ADN services are provided as a convenient managed service with no capital expenditure. The result is higher application availability, better performance, improved security, and significantly improved scalability and operations. Cloud computing providers can focus on their core strength – developing innovative hosting services, application development platforms and off-the-shelf software applications - while benefiting from a scalable and robust delivery platform which works on a global scale.

Figure 2 – Response times across 25 geographies to complete a 4-step dynamic transaction for a Web-based customer service portal hosted as a single instance in eastern United States. Prior to the use of an ADN, users in some cities such as Madrid, Singapore and Sydney experienced over 40-second response times. After the use of an ADN, all cities exhibited response times no more than 17-seconds – whereas someone in Singapore would “feel” as though they were located in Los Angeles.

Some of the large cloud computing providers will opt to build-out a multitude of big regionalized data-centers, often spending tens or hundreds of millions of dollars on big data-center investments. While this will undoubtedly place on-demand infrastructure in closer proximity to application users, there are architectural limitations to this approach.

On-demand browser applications are accessible on a global scale, which means if the application resides in a single data-center there will always be some portion of the user community who will be much farther away. Do you have your application run in a North America, Europe or Asia-Pac data-center? And replicating instances of a single application across multiple data-centers may often not be desirable or even possible due to a variety of considerations such as management, cost, integration, performance, regulatory compliance and security

For those applications which can be replicated in multiple instances, however, the big data-center approach remains flawed as the majority of application users are most likely not buying their Internet connectivity from the same provider servicing the regional data-center. In fact, measurements show the ten largest networks in the Internet provide last-mile subscriptions to approximately 30% of overall Internet users3. And no single network provides more than 10% of the access traffic. So even if application instances were replicated in large data-centers that happened to reside within the world’s 30 largest networks, the average distance from an application user to data-center would still exceed 1,500 miles. Let alone unless the data-center is in the same service provider as the application user, the user remains at the mercy of Internet delivery bottlenecks.

From IP traceroute measurements, it is easy to observe how users are sometimes routed outside of countries and even continents to reach data-center infrastructure. Even when having infrastructure in the same city as the end-user, but not the same service provider, applications can be subject to substantial latency challenges. As a result, despite pre-existing data-center build-out, the use of an ADN is highly beneficial to optimize from the application user to a nearby data-center.

Number of ISPs Crossed from Application User to Data-Center - Intra City

1

2

3

4

5

Frankfurt

5%

21%

30%

28%

16%

Singapore

19%

19%

25%

31%

6%

Chicago

10%

59%

31%

0%

0%

Seattle

3%

17%

47%

27%

6%

Table1: It is very common for Internet routing to go outside of city and country when connecting application users to nearby data-centers.  For example, based on a sample of IP traceroutes, an application user in Frankfurt would traverse 3 or more ISP's 74% of the time to connect to application infrastructure also located in Frankfurt.

Leveraging CDN for static delivery of content via the public Internet is well established and understood. The next-generation of CDN services – Application Delivery Networks - are already proven and can be equally effective for transparent delivery of dynamic, on-demand applications developed and delivered within the Internet cloud. For many years now, leading managed service providers have been offering advanced services based on highly distributed global platforms which transform the Internet into a reliable and high-performing platform for on-demand application delivery to the global enterprise – for anyone, anywhere, anytime. An increasing number of applications and business processes are moving to a cloud-based delivery model. Whether it is for rich interactive Web 2.0 websites, web-enabled business processes such as extranet portals and supply chains, software-as-a-service and now on-demand cloud computing – the importance of optimizing the cloud itself moves to the forefront in order to meet the stringent demands of the enterprise.

Globally distributed Application Delivery Networks put the optimal architecture for in-cloud optimization right into IT and application development’s hands. The Internet cloud is tremendously complicated and those placing the same scrutiny towards optimizing outside of the data-center, as inside the data-center, are those who will be able to successfully satisfy the stringent demands necessary to bring cloud-based applications to the marketplace.

For those evaluating the use of any cloud-based platform or service… don’t forget the cloud. Ask probing questions to understand what is available to optimize cloud-based application delivery both inside and outside the data-center. The use of highly distributed Application Delivery Networks when applied to on-demand computing platforms is a powerful combination to help bring cloud based services to the enterprise market and is readily available today.

Recommended Reading and Viewing:

1 Historical Internet latency & packet loss measurements
http://www.akamai.com/dv2

2 Akamai - “Quarterly State of the Internet Report”
http://www.akamai.com/stateoftheinternet/

3 Akamai – How Will the Internet Scale?”
http://www.akamai.com/dl/whitepapers/How_will_the_internet_scale.pdf

More Stories By Willie M. Tejada

Willie M. Tejada is Vice President, Application and Site Acceleration, at Akamai Technologies, Inc., where he is responsible for the Application and Site Acceleration Business Units targeted at optimizing the delivery of enterprise sites and applications over the Internet. With more than 15 years of marketing, product management, and business development experience, Tejada joined Akamai in March 2007 as part of the Netli acquisition. A seasoned executive, he has held various senior management positions in both start-up and large enterprise companies including Novell, where he led marketing, product management, developer and strategic relations organizations. An accomplished communicator and presenter, he is an inventor listed on US Patent 6,078,924, and also the author of Facilitating Competitive Intelligence: The Next Step in Internet-Based Research published in CRC Press' "Best Practices Series" in Internet Management.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
Amazon has gradually rolled out parts of its IoT offerings in the last year, but these are just the tip of the iceberg. In addition to optimizing their back-end AWS offerings, Amazon is laying the ground work to be a major force in IoT – especially in the connected home and office. Amazon is extending its reach by building on its dominant Cloud IoT platform, its Dash Button strategy, recently announced Replenishment Services, the Echo/Alexa voice recognition control platform, the 6-7 strategic...
The best-practices for building IoT applications with Go Code that attendees can use to build their own IoT applications. In his session at @ThingsExpo, Indraneel Mitra, Senior Solutions Architect & Technology Evangelist at Cognizant, provided valuable information and resources for both novice and experienced developers on how to get started with IoT and Golang in a day. He also provided information on how to use Intel Arduino Kit, Go Robotics API and AWS IoT stack to build an application tha...
IoT generates lots of temporal data. But how do you unlock its value? You need to discover patterns that are repeatable in vast quantities of data, understand their meaning, and implement scalable monitoring across multiple data streams in order to monetize the discoveries and insights. Motif discovery and deep learning platforms are emerging to visualize sensor data, to search for patterns and to build application that can monitor real time streams efficiently. In his session at @ThingsExpo, ...
SYS-CON Events announced today that LeaseWeb USA, a cloud Infrastructure-as-a-Service (IaaS) provider, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. LeaseWeb is one of the world's largest hosting brands. The company helps customers define, develop and deploy IT infrastructure tailored to their exact business needs, by combining various kinds cloud solutions.
SYS-CON Events announced today that 910Telecom will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Housed in the classic Denver Gas & Electric Building, 910 15th St., 910Telecom is a carrier-neutral telecom hotel located in the heart of Denver. Adjacent to CenturyLink, AT&T, and Denver Main, 910Telecom offers connectivity to all major carriers, Internet service providers, Internet backbones and ...
Big Data, cloud, analytics, contextual information, wearable tech, sensors, mobility, and WebRTC: together, these advances have created a perfect storm of technologies that are disrupting and transforming classic communications models and ecosystems. In his session at @ThingsExpo, Erik Perotti, Senior Manager of New Ventures on Plantronics’ Innovation team, provided an overview of this technological shift, including associated business and consumer communications impacts, and opportunities it ...
SYS-CON Events announced today that Venafi, the Immune System for the Internet™ and the leading provider of Next Generation Trust Protection, will exhibit at @DevOpsSummit at 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Venafi is the Immune System for the Internet™ that protects the foundation of all cybersecurity – cryptographic keys and digital certificates – so they can’t be misused by bad guys in attacks...
It’s 2016: buildings are smart, connected and the IoT is fundamentally altering how control and operating systems work and speak to each other. Platforms across the enterprise are networked via inexpensive sensors to collect massive amounts of data for analytics, information management, and insights that can be used to continuously improve operations. In his session at @ThingsExpo, Brian Chemel, Co-Founder and CTO of Digital Lumens, will explore: The benefits sensor-networked systems bring to ...
Manufacturers are embracing the Industrial Internet the same way consumers are leveraging Fitbits – to improve overall health and wellness. Both can provide consistent measurement, visibility, and suggest performance improvements customized to help reach goals. Fitbit users can view real-time data and make adjustments to increase their activity. In his session at @ThingsExpo, Mark Bernardo Professional Services Leader, Americas, at GE Digital, discussed how leveraging the Industrial Internet a...
There will be new vendors providing applications, middleware, and connected devices to support the thriving IoT ecosystem. This essentially means that electronic device manufacturers will also be in the software business. Many will be new to building embedded software or robust software. This creates an increased importance on software quality, particularly within the Industrial Internet of Things where business-critical applications are becoming dependent on products controlled by software. Qua...
In addition to all the benefits, IoT is also bringing new kind of customer experience challenges - cars that unlock themselves, thermostats turning houses into saunas and baby video monitors broadcasting over the internet. This list can only increase because while IoT services should be intuitive and simple to use, the delivery ecosystem is a myriad of potential problems as IoT explodes complexity. So finding a performance issue is like finding the proverbial needle in the haystack.
The 19th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Digital Transformation, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportuni...
Large scale deployments present unique planning challenges, system commissioning hurdles between IT and OT and demand careful system hand-off orchestration. In his session at @ThingsExpo, Jeff Smith, Senior Director and a founding member of Incenergy, will discuss some of the key tactics to ensure delivery success based on his experience of the last two years deploying Industrial IoT systems across four continents.
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, demonstrated how to move beyond today's coding paradigm and shared the must-have mindsets for removing complexity from the develo...
SYS-CON Events announced today that MangoApps will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. MangoApps provides modern company intranets and team collaboration software, allowing workers to stay connected and productive from anywhere in the world and from any device.
IoT is rapidly changing the way enterprises are using data to improve business decision-making. In order to derive business value, organizations must unlock insights from the data gathered and then act on these. In their session at @ThingsExpo, Eric Hoffman, Vice President at EastBanc Technologies, and Peter Shashkin, Head of Development Department at EastBanc Technologies, discussed how one organization leveraged IoT, cloud technology and data analysis to improve customer experiences and effi...
The IETF draft standard for M2M certificates is a security solution specifically designed for the demanding needs of IoT/M2M applications. In his session at @ThingsExpo, Brian Romansky, VP of Strategic Technology at TrustPoint Innovation, explained how M2M certificates can efficiently enable confidentiality, integrity, and authenticity on highly constrained devices.
In today's uber-connected, consumer-centric, cloud-enabled, insights-driven, multi-device, global world, the focus of solutions has shifted from the product that is sold to the person who is buying the product or service. Enterprises have rebranded their business around the consumers of their products. The buyer is the person and the focus is not on the offering. The person is connected through multiple devices, wearables, at home, on the road, and in multiple locations, sometimes simultaneously...
“delaPlex Software provides software outsourcing services. We have a hybrid model where we have onshore developers and project managers that we can place anywhere in the U.S. or in Europe,” explained Manish Sachdeva, CEO at delaPlex Software, in this SYS-CON.tv interview at @ThingsExpo, held June 7-9, 2016, at the Javits Center in New York City, NY.
"We've discovered that after shows 80% if leads that people get, 80% of the conversations end up on the show floor, meaning people forget about it, people forget who they talk to, people forget that there are actual business opportunities to be had here so we try to help out and keep the conversations going," explained Jeff Mesnik, Founder and President of ContentMX, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.