Welcome!

Java Authors: Trevor Parsons, Peter Silva, Elizabeth White, Rex Morrow, Datical, Hovhannes Avoyan

Related Topics: Websphere, Java

Websphere: Article

Unveiling the java.lang.Out OfMemoryError

And dissecting Java heap dumps

When we encounter a java.lang.OutOfMemoryError, we often find that Java heap dumps, along with other artifacts, are generated by the Java Virtual Machine. If you feel like jumping right into a Java heap dump when you get a java.lang.OutOfMemoryError, don't worry, it's a normal thought. You may be able to discover something serendipitously, but it's not always the best idea to analyze Java heap dumps, depending on the situation you are facing. We first need to investigate the root cause of the java.lang.OutOfMemoryError.

Only after the root cause is identified can we decide whether or not to analyze Java heap dumps. What is a java.lang.OutOfMemoryError? Why in the world does it occur? Let's find out.

What Is a java.lang.OutOfMemoryError?
A java.lang.OutOfMemoryError is a subclass of java.lang.VirtualMachineError that is thrown when the Java Virtual Machine is broken or has run out of resources that are necessary to continue the operation of the Java Virtual Machine. Obviously, memory is the exhausted resource for a java.lang.OutOfMemoryError, which is thrown when the Java Virtual Machine cannot allocate an object due to memory constraints. Unfortunately, the Java specification of java.lang.OutOfMemoryError does not elaborate further on what kind of memory it's talking about.

There are six different types of runtime data areas, or memory areas, in the Java Virtual Machine (see Figure 1).

  1. Program Counter Register
  2. Java Virtual Machine Stack
  3. Heap
  4. Method Area
  5. Runtime Constant Pool
  6. Native Method Stack

The Program Counter Register, also known as the pc register, stores the address of the Java byte code instruction that is currently being executed (just like the processor register in your central processing unit of the device from which you are reading or printing this article). You will not see a java.lang.OutOfMemoryError from the pc register since a program counter is not conventionally considered as a memory.

Java Virtual Machine Stacks contain frames where data, return values, and partial execution results are stored. Java Virtual Machine Stacks can be expanded during runtime. If there's not enough memory for the expansion of an existing Java Virtual Machine stack, or for the creation of a new Java Virtual Machine stack for a new thread, the Java Virtual Machine will throw a java.lang.OutOfMemoryError.

The Heap is where instances of Java classes and arrays are allocated. A java.lang.OutOfMemoryError will be thrown when there is not enough memory available for instances of Java classes or arrays.

The Method Area stores class-related information, the runtime constant pool, for instances, the code for methods and constructors, and field/method data. If there's not enough memory in the method area, you will encounter java.lang.OutOfMemoryError.

The Runtime Constant Pool contains constants such as field references and literals. A java.lang.OutOfMemoryError will be thrown when not enough memory is available for the construction of the runtime constant pool area.

Native Memory Stacks store conventional stacks, also known as C stacks, to support native methods that are written in a non-Java language such as C/C++. Native memory stacks can be expanded during runtime. If there's not enough memory for the expansion of an existing native memory stack or for the creation of a new native memory stack for a new thread, you would see a java.lang.OutOfMemoryError.

You may have seen a java.lang.StackOverflowError, which is completely different from a java.lang.OutOfMemoryError. A java.lang.StackOverflowError is thrown when native memory stacks or Java Virtual Machine stacks need more memory than is configured. In most IBM Java Virtual Machine implementations, the -Xmso command-line option controls the stack size for operation system threads or native thread, and the -Xss command-line option controls the stack size for Java threads. In some implementations, such as Sun Microsystems HotSpot Java Virtual Machine, the Java methods share stack frames with C/C++ native code. The maximum stack size for a thread can be configured with the -Xss Java command-line option. The default sizes of these options vary by platform and implementation, but are usually between 256 Kbytes-1024 Kbytes. Please refer to the documentation of your Java virtual machine for more specific information. We will cover more about java.lang.StackOverflowError in a separate article.

Now that we understand which memory areas could cause a java.lang.OutOfMemoryError, let's take a look at actual error messages. What does a java.lang.OutOfMemoryError look like and how can I address each symptom? Have you ever seen a java.lang.OutOfMemoryError similar to the following?

java.lang.OutOfMemoryError: Requested array size exceeds VM limit

This error message indicates that there is a memory request for an array but that's too large for a predefined limit of a virtual machine. What do we do if we encounter this kind of java.lang.OutOfMemoryError? We need to check the source code to make sure that there's no huge array created dynamically or statically. Fortunately, latest virtual machines usually do not have this limit.

java.lang.OutOfMemoryError: PermGen space

You will see an OutOfMemoryError when the Permanent Generation area of the Java heap is full, like the above message.

On some Java Virtual Machines, such as Sun Microsystems' HotSpot Java Virtual Machine, a dedicated memory area called permanent generation (or permanent region) stores objects that describe classes and methods. We can visualize the usage of a permanent generation with the IBM Pattern Modeling and Analysis Tool for the Java Garbage Collector.

In Figure 2 we enabled the "Max Perm" button and  the "Used Tenured" button to visualize permanent generation usage and its maximum size. We can see that the used amount of permanent generation reaches its maximum limit. That's why we're getting the java.lang.OutOfMemoryError: PermGen space message. If there's no memory leak, we can just use the -XX:MaxPermSize command-line option to increase the maximum limit of the permanent generation. For example,

-XX:MaxPermSize=128m

will set the maximum size of the permanent generation to 128 Mbytes.

So far we've seen a Java.lang.OutOfMemoryError due to exhaustion in the Java heap or an area in the Java heap such as permanent generation. Surprisingly, a Java.lang.OutOfMemoryError can be thrown when the Java Virtual Machine cannot find any more memory in the native memory as well as in the Java heap. How can we tell whether it's caused by the Java heap or native memory?

In the following message, there's no information in the message whether java.lang.OutOfMemoryError is caused by the Java heap or native memory:

JVMDUMP013I Processed dump event "systhrow", detail "java/lang/OutOfMemoryError".

In the following case, the Java virtual machine is kind enough to tell us that there's native memory exhaustion. In the message, the Java virtual machine says "allocateMemory failed" which means a native memory allocation failed:

java.lang.OutOfMemoryError: JVMCI046: allocateMemory failed

In the following message, there's no clue as to whether it's native memory or a Java heap. Fortunately we have a line number, 20, and the source code file name, HeapExhaustionSimulator.java. This might be Java heap related.

JVMDG274: Dump Handler has Processed OutOfMemory.
Exception in thread "main" java.lang.OutOfMemoryError
at HeapExhaustionSimulator.main(HeapExhaustionSimulator.java:20)

In the following message, there's no clue whether it's native memory or a Java heap. But "sun.misc.Unsafe.allocateMemory(Native Method)" indicates that it might be native memory related.

Exception in thread "main" java.lang.OutOfMemoryError
at sun.misc.Unsafe.allocateMemory(Native Method)
at java.nio.DirectByteBuffer.<init>(DirectByteBuffer.java:99)
at java.nio.ByteBuffer.allocateDirect(ByteBuffer.java:288)
at NativeMemorySimulator.main(NativeMemorySimulator.java:11)

In the following message, the  Java Virtual Machine indicates that the Java heap space is related to the java.lang.OutOfMemoryError.

java.lang.OutOfMemoryError: Java heap space
Dumping heap to java_pid6280.hprof ...
Heap dump file created [50549348 bytes in 1.444 secs]

You may have seen a java.lang.OutOfMemoryError similar to the following:

java.lang.OutOfMemoryError: requested NNN bytes for MMMM. Out of swap space?

Literally you could check the operating system configuration for swap space. It seems that the Java Virtual Machine is not sure if the swap space is the root cause of the problem (?).We can check whether this Java Virtual Machine is consuming too much native memory .We also need to make sure there's enough memory for this JVM and no other processes are consuming most of memory resource. The last thing we can try is to find any known defects related to the module, MMMM.

java.lang.OutOfMemoryError: unable to create new native thread

This kind of message is seen when you have an excessive number of threads or if the native memory is exhausted and a thread is attempting to be created.

What Is a Java Heap Dump?
We've learned that a Java heap is a runtime data area where all class instances and arrays are allocated and shared among all Java Virtual Machine threads during execution of the JVM. A Java heap dump is a snapshot of a Java heap at a specific time. It's like taking a picture of a busy warehouse at a given time. If we look at the picture, we can identify what items were available at that time. Some items may be shipped to Canada a few minutes later, but you can see them in the picture because they were there at the time of the snapshot.

Because the Java specification does not mention the Java heap dump, there are different forms of Java heap dump implementations from different Java Virtual Machines. The IBM Java heap dump provides information mostly about the Java heap.

The Sun Microsystems hprof Java heap dump provides information about the Java Virtual Machine stacks, the runtime constant pool as well as the Java heap.

How Can I Generate Java Heap Dumps?
A Java heap dump is usually automatically generated by the Java Virtual Machine, but you can also force Java heap dump generation. On most IBM Java Virtual Machines, Java heap dumps are generated automatically when the Java heap becomes exhausted. On most Sun Microsystems JVMs, you need to configure the virtual machine to generate Java heap dumps. If you want to generate a Java heap dump when a java.lang.OutOfMemoryError occurs, you need to set the -XX:+HeapDumpOnOutOfMemoryError command-line option on certain releases of Sun's JVM. You could also use a HPROF profiler by using the -agentlib:hprof=heap=dump command-line option. You could also use jmap if your Sun JVM provides the utility. For example, jmap -dump 1234 will generate the Java heap dump from the process whose identifier is 1234. You could utilize JConsole by calling the HotSpotDiagnostic MBean and the dumpHeap operation if it's available from your Sun JVM.

If you want to generate Java heap dumps for Java virtual machine crashes (an unexpected termination of process) or user signals on IBM JVMs, you can set the environment variable IBM_HEAPDUMP or IBM_HEAP_DUMP to TRUE. For example, you can send the IBM Java virtual machine the signal SIGQUIT for the Linux operating systems and AIX operating systems or SIGINT(Control-Break key combination) for Windows to generate Java heap dumps. The IBM JVM provides an API, com.ibm.jvm.Dump.HeapDump(), that you can invoke from application code to generate Java heap dumps programmatically.

Please refer to the documentation of your JVM for detailed information since these options vary by platform and implementation.

Where Can I Find Java Heap Dumps?
You can find Java heap dumps in the current working directory of the Java Virtual Machine process, unless you specify a different location. You can specify the location with the environment variable IBM_HEAPDUMPDIR or _CEE_DMPTARG on IBM JVMs. If there's not enough space available for Java heap dumps or the JVM cannot acquire write-permission in the location, Java heap dumps are generated to the operating system's temporary directory on the IBM JVM. Please refer to your operating system manual for the location of the system's temporary directory and its configuration.

What Do Java Heap Dumps Look Like and How Can I read Them?
Nowadays, the majority of Java heap dump formats are generated in binary. Thus you might want to use a tool unless your brain can interpret hexadecimal codes without any headaches.

The IBM HeapAnalyzer is one of the most popular Java heap analysis tools. It can analyze all Java heap dump formats provided by Sun, HP and most of the Java heap dump formats provided by IBM. It's powered by object query engines and patent-pending heuristic analysis engines. I've been developing the IBM HeapAnalyzer from scratch since 2003, spending my vacation, weekends and weeknights on it. The IBM HeapAnalyzer was so successful that IBM decided to make the IBM HeapAnalyzer an official IBM software product and bundle it with existing products. So I donated all the source code of IBM HeapAnalyzer to IBM to run it on an Eclipse-based interface. Now the IBM HeapAnalyzer has a daughter, MDD4J, which always reminds me of my late daughter lost while I was working on the MDD4J project. The IBM HeapAnalyzer has been the top technology at IBM alphaWorks for six consecutive years since its inception as of March 2009.

Whether your Java heap dump is in binary or text/ascii format, the heap dump contains information about all the live objects that are on the Java heap such as address, object size, and referenced addresses. Let's take a look at the text/ascii format Java heap dumps since binary heap dumps have similar information but are in hexadecimal format to save disk space.

More Stories By Jinwoo Hwang

Jinwoo Hwang is a software engineer, inventor, author, and technical leader at IBM WebSphere Application Server Technical Support in Research Triangle Park, North Carolina. He joined IBM in 1995 and worked with IBM Global Learning Services, IBM Consulting Services, and software development teams prior to his current position at IBM. He is an IBM Certified Solution Developer and IBM Certified WebSphere Application Server System Administrator as well as a SUN Certified Programmer for the Java platform. He is the architect and creator of the following technologies:

Mr. Hwang is the author of the book C Programming for Novices (ISBN:9788985553643, Yonam Press, 1995) as well as the following webcasts and articles:

Mr. Hwang is the author of the following IBM technical articles:

  • VisualAge Performance Guide,1999
  • CORBA distributed object applet/servlet programming for IBM WebSphere Application Server and VisualAge for Java v2.0E ,1999
  • Java CORBA programming for VisualAge for Java ,1998
  • MVS/CICS application programming for VisualAge Generator ,1998
  • Oracle Native/ODBC application programming for VisualAge Generator ,1998
  • MVS/CICS application Web connection programming for VisualAge Generator ,1998
  • Java applet programming for VisualAge WebRunner ,1998
  • VisualAge for Java/WebRunner Server Works Java Servlet Programming Guide ,1998
  • RMI Java Applet programming for VisualAge for Java ,1998
  • Multimedia Database Java Applet Programming Guide ,1997
  • CICS ECI Java Applet programming guide for VisualAge Generator 3.0 ,1997
  • CICS ECI DB2 Application programming guide for VigualGen, 1997
  • VisualGen CICS ECI programming guide, 1997
  • VisualGen CICS DPL programming guide, 1997

Mr. Hwang holds the following patents in the U.S. / other countries:


Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation and integration; and visibility through intelligent business operations and big data.
There will be 50 billion Internet connected devices by 2020. Today, every manufacturer has a propriety protocol and an app. How do we securely integrate these "things" into our lives and businesses in a way that we can easily control and manage? Even better, how do we integrate these "things" so that they control and manage each other so our lives become more convenient or our businesses become more profitable and/or safe? We have heard that the best interface is no interface. In his session at Internet of @ThingsExpo, Chris Matthieu, Co-Founder & CTO at Octoblu, Inc., will discuss how these devices generate enough data to learn our behaviors and simplify/improve our lives. What if we could connect everything to everything? I'm not only talking about connecting things to things but also systems, cloud services, and people. Add in a little machine learning and artificial intelligence and now we have something interesting...
Last week, while in San Francisco, I used the Uber app and service four times. All four experiences were great, although one of the drivers stopped for 30 seconds and then left as I was walking up to the car. He must have realized I was a blogger. None the less, the next car was just a minute away and I suffered no pain. In this article, my colleague, Ved Sen, Global Head, Advisory Services Social, Mobile and Sensors at Cognizant shares his experiences and insights.
We are reaching the end of the beginning with WebRTC and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) irreversibly encoded. In his session at Internet of @ThingsExpo, Peter Dunkley, Technical Director at Acision, will look at how this identity problem can be solved and discuss ways to use existing web identities for real-time communication.
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. It also ensured scalability and better service for customers, including MUY! Companies, one of the country's largest franchise restaurant companies with 232 Pizza Hut locations. This is one example of WebRTC adoption today, but the potential is limitless when powered by IoT. Attendees will learn real-world benefits of WebRTC and explore future possibilities, as WebRTC and IoT intersect to improve customer service.
From telemedicine to smart cars, digital homes and industrial monitoring, the explosive growth of IoT has created exciting new business opportunities for real time calls and messaging. In his session at Internet of @ThingsExpo, Ivelin Ivanov, CEO and Co-Founder of Telestax, will share some of the new revenue sources that IoT created for Restcomm – the open source telephony platform from Telestax. Ivelin Ivanov is a technology entrepreneur who founded Mobicents, an Open Source VoIP Platform, to help create, deploy, and manage applications integrating voice, video and data. He is the co-founder of TeleStax, an Open Source Cloud Communications company that helps the shift from legacy IN/SS7 telco networks to IP-based cloud comms. An early investor in multiple start-ups, he still finds time to code for his companies and contribute to open source projects.
The Internet of Things (IoT) promises to create new business models as significant as those that were inspired by the Internet and the smartphone 20 and 10 years ago. What business, social and practical implications will this phenomenon bring? That's the subject of "Monetizing the Internet of Things: Perspectives from the Front Lines," an e-book released today and available free of charge from Aria Systems, the leading innovator in recurring revenue management.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges.
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at 6th Big Data Expo®, Hannah Smalltree, Director at Treasure Data, to discuss how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other machines.
All major researchers estimate there will be tens of billions devices – computers, smartphones, tablets, and sensors – connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be!
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at Internet of @ThingsExpo, Erik Lagerway, Co-founder of Hookflash, will walk through the shifting landscape of traditional telephone and voice services to the modern P2P RTC era of OTT cloud assisted services.
While great strides have been made relative to the video aspects of remote collaboration, audio technology has basically stagnated. Typically all audio is mixed to a single monaural stream and emanates from a single point, such as a speakerphone or a speaker associated with a video monitor. This leads to confusion and lack of understanding among participants especially regarding who is actually speaking. Spatial teleconferencing introduces the concept of acoustic spatial separation between conference participants in three dimensional space. This has been shown to significantly improve comprehension and conference efficiency.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, will discuss single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example to explain some of these concepts including when to use different storage models.
SYS-CON Events announced today that Gridstore™, the leader in software-defined storage (SDS) purpose-built for Windows Servers and Hyper-V, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Gridstore™ is the leader in software-defined storage purpose built for virtualization that is designed to accelerate applications in virtualized environments. Using its patented Server-Side Virtual Controller™ Technology (SVCT) to eliminate the I/O blender effect and accelerate applications Gridstore delivers vmOptimized™ Storage that self-optimizes to each application or VM across both virtual and physical environments. Leveraging a grid architecture, Gridstore delivers the first end-to-end storage QoS to ensure the most important App or VM performance is never compromised. The storage grid, that uses Gridstore’s performance optimized nodes or capacity optimized nodes, starts with as few a...
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace. These technological reforms have not only changed computers and smartphones, but are also changing the data processing model for all information devices. In particular, in the area known as M2M (Machine-To-Machine), there are great expectations that information with a new type of value can be produced using a variety of devices and sensors saving/sharing data via the network and through large-scale cloud-type data processing. This consortium believes that attaching a huge number of devic...
Innodisk is a service-driven provider of industrial embedded flash and DRAM storage products and technologies, with a focus on the enterprise, industrial, aerospace, and defense industries. Innodisk is dedicated to serving their customers and business partners. Quality is vitally important when it comes to industrial embedded flash and DRAM storage products. That’s why Innodisk manufactures all of their products in their own purpose-built memory production facility. In fact, they designed and built their production center to maximize manufacturing efficiency and guarantee the highest quality of our products.
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. Download Slide Deck: ▸ Here
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. Over the summer Gartner released its much anticipated annual Hype Cycle report and the big news is that Internet of Things has now replaced Big Data as the most hyped technology. Indeed, we're hearing more and more about this fascinating new technological paradigm. Every other IT news item seems to be about IoT and its implications on the future of digital business.
BSQUARE is a global leader of embedded software solutions. We enable smart connected systems at the device level and beyond that millions use every day and provide actionable data solutions for the growing Internet of Things (IoT) market. We empower our world-class customers with our products, services and solutions to achieve innovation and success. For more information, visit www.bsquare.com.
With the iCloud scandal seemingly in its past, Apple announced new iPhones, updates to iPad and MacBook as well as news on OSX Yosemite. Although consumers will have to wait to get their hands on some of that new stuff, what they can get is the latest release of iOS 8 that Apple made available for most in-market iPhones and iPads. Originally announced at WWDC (Apple’s annual developers conference) in June, iOS 8 seems to spearhead Apple’s newfound focus upon greater integration of their products into everyday tasks, cross-platform mobility and self-monitoring. Before you update your device, here is a look at some of the new features and things you may want to consider from a mobile security perspective.