Welcome!

Java Authors: Carmen Gonzalez, Pat Romanski, Victoria Livschitz, Elizabeth White, Liz McMillan

Related Topics: Cloud Expo

Cloud Expo: Blog Feed Post

Infrastructure 2.0 + Cloud + IT as a Service = An Architectural Parfait

The introduction of the newest member of the cloud computing buzzword family is “IT as a Service"

Infrastructure 2.0 ≠ cloud computing ≠ IT as a Service. There is a difference between Infrastructure 2.0 and cloud. There is also a difference between cloud and IT as a Service. But they do go together, like a parfait. And everybody likes a parfait…

image The introduction of the newest member of the cloud computing buzzword family is “IT as a Service.” It is understandably causing some confusion because, after all, isn’t that just another way to describe “private cloud”?  No, actually it isn’t. There’s a lot more to it than that, and it’s very applicable to both private and public models. Furthermore, equating “cloud computing” to “IT as a Service” does both a big a disservice as making synonyms of “Infrastructure 2.0” and “cloud computing.” These three [ concepts | models | technologies ] are highly intertwined and in some cases even interdependent, but they are not the same.

In the simplest explanation possible: infrastructure 2.0 enables cloud computing which enables IT as a service.

Now that we’ve got that out of the way, let’s dig in.

ENABLE DOES NOT MEAN EQUAL TO

One of the core issues seems to be the rush to equate “enable” with “equal”. There is a relationship between these three technological concepts but they are in no wise equivalent nor should be they be treated as such. Like SOA, the differences between them revolve primarily around the level of abstraction and the layers at which they operate. Not the layers of the OSI model or the technology stack, but the layers of a data center architecture.

Let’s start at the bottom, shall we?

INFRASTRUCTURE 2.0

At the very lowest layer of the architecture is Infrastructure 2.0. Infrastructure 2.0 is focused on enabling dynamism and collaboration across the network and application delivery network infrastructure. It is the way in which traditionally disconnected (from a communication and management point of view) data center foundational components are imbued with the ability to connect and collaborate. This is primarily accomplished via open, standards-based APIs that provide a granular set of operational functions that can be invoked from a variety of programmatic methods such as orchestration systems, custom applications, and via integration with traditional data center management solutions. Infrastructure 2.0 is about making the network smarter both from a management and a run-time (execution) point of view, but in the case of its relationship to cloud and IT as a Service the view is primarily focused on imagemanagement.

Infrastructure 2.0 includes the service-enablement of everything from routers to switches, from load balancers to application acceleration, from firewalls to web application security components to server (physical and virtual) infrastructure. It is, distilled to its core essence, API-enabled components.

CLOUD COMPUTING

Cloud computing is the closest to SOA in that it is about enabling operational services in much the same way as SOA was about enabling business services. Cloud computing takes the infrastructure layer services and orchestrates them together to codify an operational process that provides a more efficient means by which compute, network, storage, and security resources can be provisioned and managed. This, like Infrastructure 2.0, is an enabling technology. Alone, these operational services are generally discrete and are packaged up specifically as the means to an end – on-demand provisioning of IT services.

Cloud computing is the service-enablement of operational services and also carries along the notion of an API. In the case of cloud computing, this API serves as a framework through which specific operations can be accomplished in a push-button like manner.

IT as a SERVICE

At the top of our technology pyramid, as it is likely obvious at this point we are building up to the “pinnacle” of IT by laying more aggressively focused layers atop one another, we have IT as a Service. IT as a Service, unlike cloud computing, is designed not only to be consumed by other IT-minded folks, but also by (allegedly) business folks. IT as a Service broadens the provisioning and management of resources and begins to include not only operational services but those services that are more, well, businessy, such as identity management and access to resources.

IT as a Service builds on the services provided by cloud computing, which is often called a “cloud framework” or a “cloud API” and provides the means by which resources can be provisioned and managed. Now that sounds an awful lot like “cloud computing” but the abstraction is a bit higher than what we expect with cloud. Even in a cloud computing API we are steal interacting more directly with operational and compute-type resources. We’re provisioning, primarily, infrastructure services but we are doing so at a much higher layer and in a way that makes it easy for both business and application developers and analysts to do so.

An example is probably in order at this point.

THE THREE LAYERS in the ARCHITECTURAL PARFAIT

image

 

 

 

Let us imagine a simple “application” which itself requires only one server and which must be available at all times.

That’s the “service” IT is going to provide to the business.

In order to accomplish this seemingly simple task, there’s a lot that actually has to go on under the hood, within the bowels of IT.

LAYER ONE

Consider, if you will, what fulfilling that request means. You need at least two servers and a Load balancer, you need a server and some storage, and you need – albeit unknown to the business user – firewall rules to ensure the application is only accessible to those whom you designate. So at the bottom layer of the stack (Infrastructure 2.0) you need a set of components that match these functions and they must be all be enabled with an API (or at a minimum by able to be automated via traditional scripting methods). Now the actual task of configuring a load balancer is not just a single API call. Ask RackSpace, or GoGrid, or Terremark, or any other cloud provider. It takes multiple steps to authenticate and configure – in the right order – that component. The same is true of many components at the infrastructure layer: the APIs are necessarily granular enough to provide the flexibility necessary to be combined in a way as to be customizable for each unique environment in which they may be deployed. So what you end up with is a set of infrastructure services that comprise the appropriate API calls for each component based on the specific operational policies in place.

LAYER TWO

At the next layer up you’re providing even more abstract frameworks. The “cloud API” at this layer may provide services such as “auto-scaling” that require a great deal of configuration and registration of components with other components. There’s automation and orchestration occurring at this layer of the IT Service Stack, as it were, that is much more complex but narrowly focused than at the previous infrastructure layer. It is at this layer that the services become more customized and able to provide business and customer specific options. It is also at this layer where things become more operationally focused, with the provisioning of “application resources” comprising perhaps the provisioning of both compute and storage resources. This layer also lays the foundation for metering and monitoring (cause you want to provide visibility, right?) which essentially overlays, i.e. makes a service of, multiple infrastructure resource monitoring services.

LAYER THREE

At the top layer is IT as a Service, and this is where systems become very abstracted and get turned into the IT King “A La Carte” Menu that is the ultimate goal according to everyone who’s anyone (and a few people who aren’t). This layer offers an interface to the cloud in such a way as to make self-service possible. It may not be Infrabook or even very pretty, but as long as it gets the job done cosmetics are just enhancing the value of what exists in the first place. IT as a Service is the culmination of all the work done at the previous layers to fine-tune services until they are at the point where they are consumable – in the sense that they are easy to understand and require no real technical understanding of what’s actually going on. After all, a business user or application developer doesn’t really need to know how the server and storage resources are provisioned, just in what sizes and how much it’s going to cost.

IT as a Service ultimately enables the end-user – whomever that may be – to easily “order” IT services to fulfill the application specific requirements associated with an application deployment. That means availability, scalability, security, monitoring, and performance.

A DYNAMIC DATA CENTER ARCHITECTURE

One of the first questions that should come to mind is: why does it matter? After all, one could cut out the “cloud computing” layer and go straight from infrastructure services to IT as a Service. While that’s technically true it eliminates one of the biggest benefits of a layered and highly abstracted architecture : agility. By presenting each layer to the layer above as services, we are effectively employing the principles of a service-oriented architecture and separating the implementation from the interface. This provides the ability to modify the implementation without impacting the interface, which means less down-time and very little – if any – modification in layers above the layer being modified. This translates into, at the lowest level, vender agnosticism and the ability to avoid vendor-lock in. If two components, say a Juniper switch and a Cisco switch, are enabled with the means by which they can be enabled as services, then it becomes possible to switch the two at the implementation layer without requiring the changes to trickle upward through the interface and into the higher layers of the architecture.

It’s polymorphism applied to an data center operation rather than a single object’s operations, to put it in developer’s terms. It’s SOA applied to a data center rather than an application, to put it in an architect’s terms.

It’s an architectural parfait and, as we all know, everybody loves a parfait, right?


Related blogs & articles:

Follow me on Twitter View Lori's profile on SlideShare friendfeed icon_facebook

AddThis Feed Button Bookmark and Share

 

 

Read the original blog entry...

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

@ThingsExpo Stories
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.