Welcome!

Java IoT Authors: Liz McMillan, Elizabeth White, Jamie Maidson, Yakov Fain, Scott Allen

Related Topics: Microservices Expo

Microservices Expo: Article

In-Memory BI Is Not the Future, It’s the Past

Why the current in-memory BI hype can be misleading.

In recent times, one of the most popular subjects related to the field of Business Intelligence (BI) has been In-memory BI technology. The subject gained popularity largely due to the success of QlikTech, provider of the in-memory-based QlikView BI product. Following QlikTech’s lead, many other BI vendors have jumped on the in-memory “hype wagon,” including the software giant, Microsoft, which has been aggressively marketing PowerPivot, their own in-memory database engine.

The increasing hype surrounding in-memory BI has caused BI consultants, analysts and even vendors to spew out endless articles, blog posts and white papers on the subject, many of which have also gone the extra mile to describe in-memory technology as the future of business intelligence, the death blow to the data warehouse and the swan song of OLAP technology. I find one of these in my inbox every couple of weeks.

Just so it is clear - the concept of in-memory business intelligence is not new. It has been around for many years. The only reason it became widely known recently is because it wasn’t feasible before 64-bit computing became commonly available. Before 64-bit processors, the maximum amount of RAM a computer could utilize was barely 4GB, which is hardly enough to accommodate even the simplest of multi-user BI solutions. Only when 64-bit systems became cheap enough did it became possible to consider in-memory technology as a practical option for BI.

The success of QlikTech and the relentless activities of Microsoft’s marketing machine have managed to confuse many in terms of what role in-memory technology plays in BI implementations. And that is why many of the articles out there, which are written by marketers or market analysts who are not proficient in the internal workings of database technology (and assume their readers aren’t either), are usually filled with inaccuracies and, in many cases, pure nonsense.

The purpose of this article is to put both in-memory and disk-based BI technologies in perspective, explain the differences between them and finally lay out, in simple terms, why disk-based BI technology isn’t on its way to extinction. Rather, disk-based BI technology is evolving into something that will significantly limit the use of in-memory technology in typical BI implementations.

But before we get to that, for the sake of those who are not very familiar with in-memory BI technology, here’s a brief introduction to the topic.

Disk and RAM
Generally speaking, your computer has two types of data storage mechanisms – disk (often called a hard disk) and RAM (random access memory). The important differences between them (for this discussion) are outlined in the following table:

Disk RAM
Abundant Scarce
Slower Faster
Cheap Expensive
Long-term Short-term

Most modern computers have 15-100 times more available disk storage than they do RAM. My laptop, for example, has 8GB of RAM and 300GB of available disk space. However, reading data from disk is much slower than reading the same data from RAM. This is one of the reasons why 1GB of RAM costs approximately 320 times that of 1GB of disk space.

Another important distinction is what happens to the data when the computer is powered down: data stored on disk is unaffected (which is why your saved documents are still there the next time you turn on your computer), but data residing in RAM is instantly lost. So, while you don’t have to re-create your disk-stored Microsoft Word documents after a reboot, you do have to re-load the operating system, re-launch the word processor and reload your document. This is because applications and their internal data are partly, if not entirely, stored in RAM while they are running.

Disk-based Databases and In-memory Databases
Now that we have a general idea of what the basic differences between disk and RAM are, what are the differences between disk-based and in-memory databases? Well, all data is always kept on hard disks (so that they are saved even when the power goes down). When we talk about whether a database is disk-based or in-memory, we are talking about where the data resides while it is actively being queried by an application: with disk-based databases, the data is queried while stored on disk and with in-memory databases, the data being queried is first loaded into RAM.

Disk-based databases are engineered to efficiently query data residing on the hard drive. At a very basic level, these databases assume that the entire data cannot fit inside the relatively small amount of RAM available and therefore must have very efficient disk reads in order for queries to be returned within a reasonable time frame. The engineers of such databases have the benefit of unlimited storage, but must face the challenges of relying on relatively slow disk operations.

On the other hand, in-memory databases work under the opposite assumption that the data can, in fact, fit entirely inside the RAM. The engineers of in-memory databases benefit from utilizing the fastest storage system a computer has (RAM), but have much less of it at their disposal.

That is the fundamental trade-off in disk-based and in-memory technologies: faster reads and limited amounts of data versus slower reads and practically unlimited amounts of data. These are two critical considerations for business intelligence applications, as it is important both to have fast query response times and to have access to as much data as possible.

The Data Challenge
A business intelligence solution (almost) always has a single data store at its center. This data store is usually called a database, data warehouse, data mart or OLAP cube. This is where the data that can be queried by the BI application is stored.

The challenges in creating this data store using traditional disk-based technologies is what gave in-memory technology its 15 minutes (ok, maybe 30 minutes) of fame. Having the entire data model stored inside RAM allowed bypassing some of the challenges encountered by their disk-based counterparts, namely the issue of query response times or ‘slow queries.’

Disk-based BI
When saying ‘traditional disk-based’ technologies, we typically mean relational database management systems (RDBMS) such as SQL Server, Oracle, MySQL and many others. It’s true that having a BI solution perform well using these types of databases as their backbone is far more challenging than simply shoving the entire data model into RAM, where performance gains would be immediate due to the fact RAM is so much faster than disk.

It’s commonly thought that relational databases are too slow for BI queries over data in (or close to) its raw form due to the fact they are disk-based. The truth is, however, that it’s because of how they use the disk and how often they use it.

Relational databases were designed with transactional processing in mind. But having a database be able to support high-performance insertions and updates of transactions (i.e., rows in a table) as well as properly accommodating the types of queries typically executed in BI solutions (e.g., aggregating, grouping, joining) is impossible. These are two mutually-exclusive engineering goals, that is to say they require completely different architectures at the very core. You simply can’t use the same approach to ideally achieve both.

In addition, the standard query language used to extract transactions from relational databases (SQL) is syntactically designed for the efficient fetching of rows, while rare are the cases in BI where you would need to scan or retrieve an entire row of data. It is nearly impossible to formulate an efficient BI query using SQL syntax.

So while relational databases are great as the backbone of operational applications such as CRM, ERP or Web sites, where transactions are frequently and simultaneously inserted, they are a poor choice for supporting analytic applications which usually involve simultaneous retrieval of partial rows along with heavy calculations.

In-memory BI
In-memory databases approach the querying problem by loading the entire dataset into RAM. In so doing, they remove the need to access the disk to run queries, thus gaining an immediate and substantial performance advantage (simply because scanning data in RAM is orders of magnitude faster than reading it from disk). Some of these databases introduce additional optimizations which further improve performance. Most of them also employ compression techniques to represent even more data in the same amount of RAM.

Regardless of what fancy footwork is used with an in-memory database, storing the entire dataset in RAM has a serious implication: the amount of data you can query with in-memory technology is limited by the amount of free RAM available, and there will always be much less available RAM than available disk space.

The bottom line is that this limited memory space means that the quality and effectiveness of your BI application will be hindered: the more historical data to which you have access and/or the more fields you can query, the better analysis, insight and, well, intelligence you can get.

You could add more and more RAM, but then the hardware you require becomes exponentially more expensive. The fact that 64-bit computers are cheap and can theoretically support unlimited amounts of RAM does not mean they actually do in practice. A standard desktop-class (read: cheap) computer with standard hardware physically supports up to 12GB of RAM today. If you need more, you can move on to a different class of computer which costs about twice as much and will allow you up to 64GB. Beyond 64GB, you can no longer use what is categorized as a personal computer but will require a full-blown server which brings you into very expensive computing territory.

It is also important to understand that the amount of RAM you need is not only affected by the amount of data you have, but also by the number of people simultaneously querying it. Having 5-10 people using the same in-memory BI application could easily double the amount of RAM required for intermediate calculations that need to be performed to generate the query results. A key success factor in most BI solutions is having a large number of users, so you need to tread carefully when considering in-memory technology for real-world BI. Otherwise, your hardware costs may spiral beyond what you are willing or able to spend (today, or in the future as your needs increase).

There are other implications to having your data model stored in memory, such as having to re-load it from disk to RAM every time the computer reboots and not being able to use the computer for anything other than the particular data model you’re using because its RAM is all used up.

A Note about QlikView and PowerPivot In-memory Technologies
QlikTech is the most active in-memory BI player out there so their QlikView in-memory technology is worth addressing in its own right. It has been repeatedly described as “unique, patented associative technology” but, in fact, there is nothing “associative” about QlikView’s in-memory technology. QlikView uses a simple tabular data model, stored entirely in-memory, with basic token-based compression applied to it. In QlikView’s case, the word associative relates to the functionality of its user interface, not how the data model is physically stored. Associative databases are a completely different beast and have nothing in common with QlikView’s technology.

PowerPivot uses a similar concept, but is engineered somewhat differently due to the fact it’s meant to be used largely within Excel. In this respect, PowerPivot relies on a columnar approach to storage that is better suited for the types of calculations conducted in Excel 2010, as well as for compression. Quality of compression is a significant differentiator between in-memory technologies as better compression means that you can store more data in the same amount RAM (i.e., more data is available for users to query). In its current version, however, PowerPivot is still very limited in the amounts of data it supports and requires a ridiculous amount of RAM.

The Present and Future Technologies
The destiny of BI lies in technologies that leverage the respective benefits of both disk-based and in-memory technologies to deliver fast query responses and extensive multi-user access without monstrous hardware requirements. Obviously, these technologies cannot be based on relational databases, but they must also not be designed to assume a massive amount of RAM, which is a very scarce resource.

These types of technologies are not theoretical anymore and are already utilized by businesses worldwide. Some are designed to distribute different portions of complex queries across multiple cheaper computers (this is a good option for cloud-based BI systems) and some are designed to take advantage of 21st-century hardware (multi-core architectures, upgraded CPU cache sizes, etc.) to extract more juice from off-the-shelf computers.

A Final Note: ElastiCube Technology
The technology developed by the company I co-founded, SiSense, belongs to the latter category. That is, SiSense utilizes technology which combines the best of disk-based and in-memory solutions, essentially eliminating the downsides of each. SiSense’s BI product, Prism, enables a standard PC to deliver a much wider variety of BI solutions, even when very large amounts of data, large numbers of users and/or large numbers of data sources are involved, as is the case in typical BI projects.

When we began our research at SiSense, our technological assumption was that it is possible to achieve in-memory-class query response times, even for hundreds of users simultaneously accessing massive data sets, while keeping the data (mostly) stored on disk. The result of our hybrid disk-based/in-memory technology is a BI solution based on what we now call ElastiCube, after which this blog is named. You can read more about this technological approach, which we call Just-in-Time In-memory Processing, at our BI Software Evolved technology page.

More Stories By Elad Israeli

Elad Israeli is co-founder of business intelligence software company, SiSense. SiSense has developed Prism, a next-generation business intelligence platform based on its own, unique ElastiCube BI technology. Elad is responsible for driving the vision and strategy of SiSense’s unique BI products. Before co-founding SiSense, Elad served as a Product Manager at global IT services firm Ness Technologies (NASDAQ: NSTC). Previously, Elad was a Product Manager at Anysoft and, before that, he co-founded and led technology development at BiSense, a BI technology company.

@ThingsExpo Stories
SYS-CON Events announced today that MangoApps will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. MangoApps provides modern company intranets and team collaboration software, allowing workers to stay connected and productive from anywhere in the world and from any device. For more information, please visit https://www.mangoapps.com/.
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, wh...
SYS-CON Events announced today that 24Notion has been named “Bronze Sponsor” of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2016, at the Javits Center in New York, New York. 24Notion is full-service global creative digital marketing, technology and lifestyle agency that combines strategic ideas with customized tactical execution. With a broad understand of the art of traditional marketing, new media, communications and social influence, 24Notion uniquely understands how to con...
The essence of data analysis involves setting up data pipelines that consist of several operations that are chained together – starting from data collection, data quality checks, data integration, data analysis and data visualization (including the setting up of interaction paths in that visualization). In our opinion, the challenges stem from the technology diversity at each stage of the data pipeline as well as the lack of process around the analysis.
Designing IoT applications is complex, but deploying them in a scalable fashion is even more complex. A scalable, API first IaaS cloud is a good start, but in order to understand the various components specific to deploying IoT applications, one needs to understand the architecture of these applications and figure out how to scale these components independently. In his session at @ThingsExpo, Nara Rajagopalan is CEO of Accelerite, will discuss the fundamental architecture of IoT applications, ...
WebRTC is bringing significant change to the communications landscape that will bridge the worlds of web and telephony, making the Internet the new standard for communications. Cloud9 took the road less traveled and used WebRTC to create a downloadable enterprise-grade communications platform that is changing the communication dynamic in the financial sector. In his session at @ThingsExpo, Leo Papadopoulos, CTO of Cloud9, will discuss the importance of WebRTC and how it enables companies to fo...
SYS-CON Events announced today TechTarget has been named “Media Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY, and the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. TechTarget is the Web’s leading destination for serious technology buyers researching and making enterprise technology decisions. Its extensive global networ...
As cloud and storage projections continue to rise, the number of organizations moving to the cloud is escalating and it is clear cloud storage is here to stay. However, is it secure? Data is the lifeblood for government entities, countries, cloud service providers and enterprises alike and losing or exposing that data can have disastrous results. There are new concepts for data storage on the horizon that will deliver secure solutions for storing and moving sensitive data around the world. ...
Korean Broadcasting System (KBS) will feature the upcoming 18th Cloud Expo | @ThingsExpo in a New York news documentary about the "New IT for the Future." The documentary will cover how big companies are transmitting or adopting the new IT for the future and will be filmed on the expo floor between June 7-June 9, 2016, at the Javits Center in New York City, New York. KBS has long been a leader in the development of the broadcasting culture of Korea. As the key public service broadcaster of Korea...
In his session at 18th Cloud Expo, Bruce Swann, Senior Product Marketing Manager at Adobe, will discuss how the Adobe Marketing Cloud can help marketers embrace opportunities for personalized, relevant and real-time customer engagement across offline (direct mail, point of sale, call center) and digital (email, website, SMS, mobile apps, social networks, connected objects). Bruce Swann has more than 15 years of experience working with digital marketing disciplines like web analytics, social med...
What a difference a year makes. Organizations aren’t just talking about IoT possibilities, it is now baked into their core business strategy. With IoT, billions of devices generating data from different companies on different networks around the globe need to interact. From efficiency to better customer insights to completely new business models, IoT will turn traditional business models upside down. In the new customer-centric age, the key to success is delivering critical services and apps wit...
With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo 2016 in New York and Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be! Internet of @ThingsExpo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 17th Cloud Expo and will feature technical sessions from a rock star conference faculty ...
The 19th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Containers, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportunity. Submit y...
There are several IoTs: the Industrial Internet, Consumer Wearables, Wearables and Healthcare, Supply Chains, and the movement toward Smart Grids, Cities, Regions, and Nations. There are competing communications standards every step of the way, a bewildering array of sensors and devices, and an entire world of competing data analytics platforms. To some this appears to be chaos. In this power panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists will discuss the vast to...
Internet of @ThingsExpo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with the 19th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world and ThingsExpo New York Call for Papers is now open.
SYS-CON Events announced today that Enzu, a leading provider of cloud hosting solutions, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Enzu’s mission is to be the leading provider of enterprise cloud solutions worldwide. Enzu enables online businesses to use its IT infrastructure to their competitive advantage. By offering a suite of proven hosting and management services, Enzu wants companies to foc...
SYS-CON Events announced today the How to Create Angular 2 Clients for the Cloud Workshop, being held June 7, 2016, in conjunction with 18th Cloud Expo | @ThingsExpo, at the Javits Center in New York, NY. Angular 2 is a complete re-write of the popular framework AngularJS. Programming in Angular 2 is greatly simplified. Now it’s a component-based well-performing framework. The immersive one-day workshop led by Yakov Fain, a Java Champion and a co-founder of the IT consultancy Farata Systems and...
Customer experience has become a competitive differentiator for companies, and it’s imperative that brands seamlessly connect the customer journey across all platforms. With the continued explosion of IoT, join us for a look at how to build a winning digital foundation in the connected era – today and in the future. In his session at @ThingsExpo, Chris Nguyen, Group Product Marketing Manager at Adobe, will discuss how to successfully leverage mobile, rapidly deploy content, capture real-time d...
IoT generates lots of temporal data. But how do you unlock its value? How do you coordinate the diverse moving parts that must come together when developing your IoT product? What are the key challenges addressed by Data as a Service? How does cloud computing underlie and connect the notions of Digital and DevOps What is the impact of the API economy? What is the business imperative for Cognitive Computing? Get all these questions and hundreds more like them answered at the 18th Cloud Expo...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, will provide an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life ...