Click here to close now.

Welcome!

Java IoT Authors: Carmen Gonzalez, Plutora Blog, Pat Romanski, Tom Lounibos, Dana Gardner

Related Topics: Java IoT, Microservices Expo, Containers Expo Blog

Java IoT: Article

Dataflow Programming: A Scalable Data-Centric Approach to Parallelism

Dataflow allows developers to easily take advantage of today’s multicore processors

There are two major drivers behind the need to embrace parallelism: the dramatic shift to commodity multicore CPUs, and the striking increase in the amount of data being processed by the applications that run our enterprises. These two factors must be addressed by any approach to parallelism or we will find ourselves falling short of resolving the crisis that is upon us. While there are data-centric approaches that have generated interest, including Map-Reduce, dataflow programming is arguably the easiest parallel strategy to adopt for the millions of developers trained in serial programming.

The blog gives a nice summary of why parallel processing is important.

Hardware Support for Parallelism
Let's start with an overview of the supported parallelism available today in modern processors. First there is processor-level parallelism involving instruction pipelining and other techniques handled by the processor. These are all optimized by compilers and runtime environments such as the Java Virtual Machine. This goodness is available to all developers without much effort on our part.

Recently commodity multicore processors have brought parallelism into the mainstream. As we move into many-core systems, we now have available essentially a "cluster in a box." But, software has lagged behind hardware in the area of parallelism. As a result, many of today's multicore systems are woefully under-utilized. We need a paradigm shift to a new programming model that embraces this high level of parallelism from the start, making it easy for developers to create highly scalable applications. However, focusing only on cores doesn't take into account the whole system. Data-intensive applications by definition have significant amounts of I/O operations. A parallel programming model must take into account parallelizing I/O operations with compute. Otherwise we'll be unable to build applications that can keep the multicore monster fed and happy.

Virtualization is a popular way to divvy up multicore machines. This is essentially treating a single machine as multiple, separate machines. Each virtual slice has its function to provide and each operates somewhat independently. This works well for splitting up IT types of functions such as email servers, and web servers. But it doesn't help with the problem of crunching big data. For big data types of problems, taking advantage of the whole machine, the "cluster in a box," is imperative.

Scale-out, using multiple machines to execute big data jobs, is another way to implement parallelism. This technique has been around for ages and is seeing new instantiations in systems such as Hadoop, built on the Map-Reduce design pattern. Scaling out to large cluster systems certainly has its advantages and is absolutely required for the Internet-scale data problem. It does however introduce inefficiencies that can be critical barriers to full utilization in smaller cluster configurations (less than 100-node size clusters).

The Next Step for Hadoop
In a talk on Hadoop, Jeff Hammerbacher stated, "More programmer-friendly parallel dataflow languages await discovery, I think. MapReduce is one (small) step in that direction." His talk is summarized in this blog. As Jeff points out, Map-Reduce is a great first step, but is lacking as a programming model. Integrating dataflow with the scale-out capabilities available in frameworks such as Hadoop offers the next big step in handling big data.

Dataflow Programming
Dataflow architecture is based on the concept of using a dataflow graph for program execution. A dataflow graph consists of nodes that are computational elements. The edges in a dataflow graph provide data paths between nodes. A dataflow graph is directed and acyclic (DAG). Figure 1 provides a snapshot of an executing dataflow application. Note how all of the nodes are executing in parallel, flowing data in a pipeline fashion.

Figure 1

Nodes in the graph do work by reading data from their input flow(s), transforming the data and pushing the results to their outputs. Nodes that provide connectivity may have only input or output flows. A graph is constructed by creating nodes and linking their data flows together. Once a graph is constructed and executed, the connectivity nodes begin reading data and pushing it downstream. Downstream consumers read the data, process it and send their results downstream. This results in pipeline parallelism, allowing each node in the graph to run in parallel as the pipeline begins to fill.

Dataflow provides a computational model. A dataflow graph must first be constructed before it can be executed. This leads to a very nice modularity: creating building blocks (nodes) that can be plugged together in an endless number of ways to create complex applications. This model is analogous to the UNIX shell model. With the UNIX shell, you can string together multiple commands that are pipelined for execution. Each command reads its input, does something with the data and writes to its output. The commands operate independently in the sense that they don't care what is upstream or downstream from them. It is up to the pipeline composer (the end user) to create the pipeline correctly to process the data as wanted. Dataflow is very similar to this model, but provides more capabilities.

The dataflow architecture provides flow control. Flow control prevents fast producers from overrunning slower consumers. Flow control is inherent in the way dataflow works and puts no burden on the programmer to deal with issues such as deadlock or race conditions.

Dataflow is focused on data parallelism. As such, it is not a great fit for all computational problems. But as has become evident over the past few years, there are many domains of parallel problems and one solution or architecture will not solve all problems for all domains. Dataflow provides a different programming paradigm for most developers, so it requires a bit of a shift in thinking to a more data-centric way of designing solutions. But once that shift takes place, dataflow programming is a natural way to express data-centric solutions.

Dataflow Programming and Actors
Dataflow programming and the Actor model available in languages such as Scala and Erlang share many similarities. The Actor model provides for independent actors to communicate using message passing. Within an actor, pattern matching is used to allow an actor determine how to handle a message. Messages are generally asynchronous, but synchronous behavior with flow control can be built on top of the Actor model with some effort.

 

In general, the Actor model is best used for task parallelism. For example, Erlang was originally developed within the telecom industry for building non-stop control systems. Dataflow is data centric and therefore well suited for big data processing tasks.

Dataflow Goodness
As just mentioned, dataflow programming is a different paradigm and so it does require somewhat of a shift in design thinking. This is not a critical issue as the concepts around dataflow are easy to grasp, which is a very important point. A parallel framework that provides great multicore utilization but takes months if not years to master is not all that helpful. Dataflow programming makes the simple things easy and the hard tasks possible.

Dataflow applications are simple to express. Dataflow uses a composition programming model based on a building blocks approach. This leads to very modular designs that provide a high amount of reuse.

Dataflow does a good job of abstracting the details of parallel development. This is important as all of the lower level tools for parallel application development are available today in frameworks such as the java.util.concurrent library available in the JDK. However, these libraries are low-level and require a high degree of expertise to use them correctly. They rely on shared state that must be protected using synchronization techniques that can lead to race conditions, deadlocks and extremely hard-to-debug problems.

Being based on a shared-nothing, immutable message passing architecture makes dataflow a simplified programming model. The nodes within a dataflow graph don't have to worry about using synchronization techniques to produce shared memory. They are lock-free so deadlock and race conditions are not a worry either. The dataflow architecture inherently handles these conditions, allowing the developer to focus on their job at hand. Since the data streams are immutable, this allows multiple readers to attach to the output node. This feature provides more flexibility and reuse in the programming model.

The immutability of the data flows also limits the side effects of nodes within a dataflow program. Nodes within a dataflow graph can only communicate over dataflow channels. By following this model, you are assured that no global state or state of other nodes can be affected by a node. Again, this helps to simplify the programming model. Developing new nodes is free of most of the worries normally involved with parallel programming.

The dataflow programming model is functional in style. Each node within a graph provides a very specific, continuous function on its input data. Programs are built by stitching these functions together in various ways to create complex applications.

Dataflow-based architecture elegantly takes advantage of multicore processors on a single machine (scale up). It's also a good architecture for scaling out to multiple machines. Nodes that run across machine boundaries can communicate over data channels using network sockets. This provides the same simple, flexible dataflow programming model in a distributed configuration.

Dataflow and Big Data
The inherent pipeline parallelism built into dataflow programming makes dataflow great for datasets ranging from thousands to billions of records. Applications written using dataflow techniques can scale easily to extremely large data sizes, generally without much strain on the memory system as a dataflow application will eventually enter into a steady state of memory consumption. The overall amount of data pumped through the application doesn't affect that steady state memory size.

Not all dataflow operators are friendly when it comes to memory consumption. Many are designed specifically to load data into memory. For example a hash join operator may load one of its data sources into an in-memory index. This is the nature of the operator and must be taken into account when using it.

Being pipelined in nature also allows for great overlap of I/O and computational tasks. As mentioned earlier, this is an important "whole" application approach that is highly critical to success in building big data applications.

Dataflow systems are easily embeddable in the current commonly used systems. For instance, a dataflow-based application can easily be executed within the context of a Map-Reduce application. Experimentation with a dataflow-based platform named Pervasive DataRush has shown that the Hadoop system can be used to scale out an application using DataRush within each map step to help parallelize the mapper to take advantage of multicore efficiencies. Allowing each mapper to handle larger chunks of data allows the overall Map-Reduce application to run faster since each mapper is itself parallelized.

Summary
Dataflow is a software architecture that is based on the idea of continuous functions executing in parallel on data streams. It's focused on data-intensive applications, lending itself to today's big data challenges. Dataflow is easy to grasp and simple to express, and this design-time scalability can be as important as its run-time scalability.

Dataflow allows developers to easily take advantage of today's multicore processors and also fits well into a distributed environment. Tackling big data problems with dataflow is straightforward and ensures your applications will be able to scale in the future to meet the growing demands of your organization.

More Stories By Jim Falgout

Jim Falgout has 20+ years of large-scale software development experience and is active in the Java development community. As Chief Technologist for Pervasive DataRush, he’s responsible for setting innovative design principles that guide the company’s engineering teams as they develop new releases and products for partners and customers. He applied dataflow principles to help architect Pervasive DataRush.

Prior to Pervasive, Jim held senior positions with NexQL, Voyence Net Perceptions/KD1 Convex Computer, Sequel Systems and E-Systems. Jim has a B.Sc. (Cum Laude) in Computer Science from Nicholls State University. He can be reached at [email protected]

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
17th Cloud Expo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy. Meanwhile, 94% of enterprises are using some form of XaaS – software, platform, and infrastructure as a service.
The 5th International DevOps Summit, co-located with 17th International Cloud Expo – being held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA – announces that its Call for Papers is open. Born out of proven success in agile development, cloud computing, and process automation, DevOps is a macro trend you cannot afford to miss. From showcase success stories from early adopters and web-scale businesses, DevOps is expanding to organizations of all sizes, including the world's largest enterprises – and delivering real results. Among the proven benefits, DevOps is corr...
The 17th International Cloud Expo has announced that its Call for Papers is open. 17th International Cloud Expo, to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, brings together Cloud Computing, APM, APIs, Microservices, Security, Big Data, Internet of Things, DevOps and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportunity. Submit your speaking proposal today!
The basic integration architecture, as defined by ESBs, hasn’t changed for more than a decade. Most cloud integration providers still rely on an ESB architecture and their proprietary connectors. As a result, enterprise integration projects suffer from constraints of availability and reliability of these connectors that are not re-usable across other integration vendors. However, the rapid adoption of APIs and almost ubiquitous availability of APIs amongst most SaaS and Cloud applications are rapidly redefining traditional integration approaches and their reliance on proprietary connectors. ...
SYS-CON Events announced today that Secure Infrastructure & Services will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Secure Infrastructure & Services (SIAS) is a managed services provider of cloud computing solutions for the IBM Power Systems market. The company helps mid-market firms built on IBM hardware platforms to deploy new levels of reliable and cost-effective computing and high availability solutions, leveraging the cloud and the benefits of Infrastructure-as-a-Service (IaaS...
It is one thing to build single industrial IoT applications, but what will it take to build the Smart Cities and truly society-changing applications of the future? The technology won’t be the problem, it will be the number of parties that need to work together and be aligned in their motivation to succeed. In his session at @ThingsExpo, Jason Mondanaro, Director, Product Management at Metanga, discussed how you can plan to cooperate, partner, and form lasting all-star teams to change the world and it starts with business models and monetization strategies.
Today air travel is a minefield of delays, hassles and customer disappointment. Airlines struggle to revitalize the experience. GE and M2Mi will demonstrate practical examples of how IoT solutions are helping airlines bring back personalization, reduce trip time and improve reliability. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Dr. Sarah Cooper, M2Mi’s VP Business Development and Engineering, will explore the IoT cloud-based platform technologies driving this change including privacy controls, data transparency and integration of real time context wi...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at @ThingsExpo, James Kirkland, Red Hat's Chief Architect for the Internet of Things and Intelligent Systems, described how to revolutionize your archit...
WebRTC converts the entire network into a ubiquitous communications cloud thereby connecting anytime, anywhere through any point. In his session at WebRTC Summit,, Mark Castleman, EIR at Bell Labs and Head of Future X Labs, will discuss how the transformational nature of communications is achieved through the democratizing force of WebRTC. WebRTC is doing for voice what HTML did for web content.
The Internet of Things is not only adding billions of sensors and billions of terabytes to the Internet. It is also forcing a fundamental change in the way we envision Information Technology. For the first time, more data is being created by devices at the edge of the Internet rather than from centralized systems. What does this mean for today's IT professional? In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists addressed this very serious issue of profound change in the industry.
Internet of Things (IoT) will be a hybrid ecosystem of diverse devices and sensors collaborating with operational and enterprise systems to create the next big application. In their session at @ThingsExpo, Bramh Gupta, founder and CEO of robomq.io, and Fred Yatzeck, principal architect leading product development at robomq.io, discussed how choosing the right middleware and integration strategy from the get-go will enable IoT solution developers to adapt and grow with the industry, while at the same time reduce Time to Market (TTM) by using plug and play capabilities offered by a robust IoT ...
"We have a tagline - "Power in the API Economy." What that means is everything that is built in applications and connected applications is done through APIs," explained Roberto Medrano, Executive Vice President at Akana, in this SYS-CON.tv interview at 16th Cloud Expo, held June 9-11, 2015, at the Javits Center in New York City.
Internet of Things is moving from being a hype to a reality. Experts estimate that internet connected cars will grow to 152 million, while over 100 million internet connected wireless light bulbs and lamps will be operational by 2020. These and many other intriguing statistics highlight the importance of Internet powered devices and how market penetration is going to multiply many times over in the next few years.
To many people, IoT is a buzzword whose value is not understood. Many people think IoT is all about wearables and home automation. In his session at @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, discussed some incredible game-changing use cases and how they are transforming industries like agriculture, manufacturing, health care, and smart cities. He will discuss cool technologies like smart dust, robotics, smart labels, and much more. Prepare to be blown away with a glimpse of the future.
SYS-CON Events announced today that BMC will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. BMC delivers software solutions that help IT transform digital enterprises for the ultimate competitive business advantage. BMC has worked with thousands of leading companies to create and deliver powerful IT management services. From mainframe to cloud to mobile, BMC pairs high-speed digital innovation with robust IT industrialization – allowing customers to provide amazing user experiences with optimized IT per...
There will be 150 billion connected devices by 2020. New digital businesses have already disrupted value chains across every industry. APIs are at the center of the digital business. You need to understand what assets you have that can be exposed digitally, what their digital value chain is, and how to create an effective business model around that value chain to compete in this economy. No enterprise can be complacent and not engage in the digital economy. Learn how to be the disruptor and not the disruptee.
The Internet of Things is not only adding billions of sensors and billions of terabytes to the Internet. It is also forcing a fundamental change in the way we envision Information Technology. For the first time, more data is being created by devices at the edge of the Internet rather than from centralized systems. What does this mean for today's IT professional? In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists will addresses this very serious issue of profound change in the industry.
Business as usual for IT is evolving into a "Make or Buy" decision on a service-by-service conversation with input from the LOBs. How does your organization move forward with cloud? In his general session at 16th Cloud Expo, Paul Maravei, Regional Sales Manager, Hybrid Cloud and Managed Services at Cisco, discusses how Cisco and its partners offer a market-leading portfolio and ecosystem of cloud infrastructure and application services that allow you to uniquely and securely combine cloud business applications and services across multiple cloud delivery models.
In his General Session at 16th Cloud Expo, David Shacochis, host of The Hybrid IT Files podcast and Vice President at CenturyLink, investigated three key trends of the “gigabit economy" though the story of a Fortune 500 communications company in transformation. Narrating how multi-modal hybrid IT, service automation, and agile delivery all intersect, he will cover the role of storytelling and empathy in achieving strategic alignment between the enterprise and its information technology.
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? In this Power Panel at DevOps Summit, moderated by Jason Bloomberg, the leading expert on architecting agility for the enterprise and president of Intellyx, panelists peeled away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud environment, and we must architect and code accordingly. At the very least, you'll have no problem fillin...