Welcome!

Java Authors: Elizabeth White, Srinivasan Sundara Rajan, Liz McMillan, Patrick Carey, Pat Romanski

Related Topics: Java, SOA & WOA, Virtualization

Java: Article

Dataflow Programming: A Scalable Data-Centric Approach to Parallelism

Dataflow allows developers to easily take advantage of today’s multicore processors

There are two major drivers behind the need to embrace parallelism: the dramatic shift to commodity multicore CPUs, and the striking increase in the amount of data being processed by the applications that run our enterprises. These two factors must be addressed by any approach to parallelism or we will find ourselves falling short of resolving the crisis that is upon us. While there are data-centric approaches that have generated interest, including Map-Reduce, dataflow programming is arguably the easiest parallel strategy to adopt for the millions of developers trained in serial programming.

The blog gives a nice summary of why parallel processing is important.

Hardware Support for Parallelism
Let's start with an overview of the supported parallelism available today in modern processors. First there is processor-level parallelism involving instruction pipelining and other techniques handled by the processor. These are all optimized by compilers and runtime environments such as the Java Virtual Machine. This goodness is available to all developers without much effort on our part.

Recently commodity multicore processors have brought parallelism into the mainstream. As we move into many-core systems, we now have available essentially a "cluster in a box." But, software has lagged behind hardware in the area of parallelism. As a result, many of today's multicore systems are woefully under-utilized. We need a paradigm shift to a new programming model that embraces this high level of parallelism from the start, making it easy for developers to create highly scalable applications. However, focusing only on cores doesn't take into account the whole system. Data-intensive applications by definition have significant amounts of I/O operations. A parallel programming model must take into account parallelizing I/O operations with compute. Otherwise we'll be unable to build applications that can keep the multicore monster fed and happy.

Virtualization is a popular way to divvy up multicore machines. This is essentially treating a single machine as multiple, separate machines. Each virtual slice has its function to provide and each operates somewhat independently. This works well for splitting up IT types of functions such as email servers, and web servers. But it doesn't help with the problem of crunching big data. For big data types of problems, taking advantage of the whole machine, the "cluster in a box," is imperative.

Scale-out, using multiple machines to execute big data jobs, is another way to implement parallelism. This technique has been around for ages and is seeing new instantiations in systems such as Hadoop, built on the Map-Reduce design pattern. Scaling out to large cluster systems certainly has its advantages and is absolutely required for the Internet-scale data problem. It does however introduce inefficiencies that can be critical barriers to full utilization in smaller cluster configurations (less than 100-node size clusters).

The Next Step for Hadoop
In a talk on Hadoop, Jeff Hammerbacher stated, "More programmer-friendly parallel dataflow languages await discovery, I think. MapReduce is one (small) step in that direction." His talk is summarized in this blog. As Jeff points out, Map-Reduce is a great first step, but is lacking as a programming model. Integrating dataflow with the scale-out capabilities available in frameworks such as Hadoop offers the next big step in handling big data.

Dataflow Programming
Dataflow architecture is based on the concept of using a dataflow graph for program execution. A dataflow graph consists of nodes that are computational elements. The edges in a dataflow graph provide data paths between nodes. A dataflow graph is directed and acyclic (DAG). Figure 1 provides a snapshot of an executing dataflow application. Note how all of the nodes are executing in parallel, flowing data in a pipeline fashion.

Figure 1

Nodes in the graph do work by reading data from their input flow(s), transforming the data and pushing the results to their outputs. Nodes that provide connectivity may have only input or output flows. A graph is constructed by creating nodes and linking their data flows together. Once a graph is constructed and executed, the connectivity nodes begin reading data and pushing it downstream. Downstream consumers read the data, process it and send their results downstream. This results in pipeline parallelism, allowing each node in the graph to run in parallel as the pipeline begins to fill.

Dataflow provides a computational model. A dataflow graph must first be constructed before it can be executed. This leads to a very nice modularity: creating building blocks (nodes) that can be plugged together in an endless number of ways to create complex applications. This model is analogous to the UNIX shell model. With the UNIX shell, you can string together multiple commands that are pipelined for execution. Each command reads its input, does something with the data and writes to its output. The commands operate independently in the sense that they don't care what is upstream or downstream from them. It is up to the pipeline composer (the end user) to create the pipeline correctly to process the data as wanted. Dataflow is very similar to this model, but provides more capabilities.

The dataflow architecture provides flow control. Flow control prevents fast producers from overrunning slower consumers. Flow control is inherent in the way dataflow works and puts no burden on the programmer to deal with issues such as deadlock or race conditions.

Dataflow is focused on data parallelism. As such, it is not a great fit for all computational problems. But as has become evident over the past few years, there are many domains of parallel problems and one solution or architecture will not solve all problems for all domains. Dataflow provides a different programming paradigm for most developers, so it requires a bit of a shift in thinking to a more data-centric way of designing solutions. But once that shift takes place, dataflow programming is a natural way to express data-centric solutions.

Dataflow Programming and Actors
Dataflow programming and the Actor model available in languages such as Scala and Erlang share many similarities. The Actor model provides for independent actors to communicate using message passing. Within an actor, pattern matching is used to allow an actor determine how to handle a message. Messages are generally asynchronous, but synchronous behavior with flow control can be built on top of the Actor model with some effort.

 

In general, the Actor model is best used for task parallelism. For example, Erlang was originally developed within the telecom industry for building non-stop control systems. Dataflow is data centric and therefore well suited for big data processing tasks.

Dataflow Goodness
As just mentioned, dataflow programming is a different paradigm and so it does require somewhat of a shift in design thinking. This is not a critical issue as the concepts around dataflow are easy to grasp, which is a very important point. A parallel framework that provides great multicore utilization but takes months if not years to master is not all that helpful. Dataflow programming makes the simple things easy and the hard tasks possible.

Dataflow applications are simple to express. Dataflow uses a composition programming model based on a building blocks approach. This leads to very modular designs that provide a high amount of reuse.

Dataflow does a good job of abstracting the details of parallel development. This is important as all of the lower level tools for parallel application development are available today in frameworks such as the java.util.concurrent library available in the JDK. However, these libraries are low-level and require a high degree of expertise to use them correctly. They rely on shared state that must be protected using synchronization techniques that can lead to race conditions, deadlocks and extremely hard-to-debug problems.

Being based on a shared-nothing, immutable message passing architecture makes dataflow a simplified programming model. The nodes within a dataflow graph don't have to worry about using synchronization techniques to produce shared memory. They are lock-free so deadlock and race conditions are not a worry either. The dataflow architecture inherently handles these conditions, allowing the developer to focus on their job at hand. Since the data streams are immutable, this allows multiple readers to attach to the output node. This feature provides more flexibility and reuse in the programming model.

The immutability of the data flows also limits the side effects of nodes within a dataflow program. Nodes within a dataflow graph can only communicate over dataflow channels. By following this model, you are assured that no global state or state of other nodes can be affected by a node. Again, this helps to simplify the programming model. Developing new nodes is free of most of the worries normally involved with parallel programming.

The dataflow programming model is functional in style. Each node within a graph provides a very specific, continuous function on its input data. Programs are built by stitching these functions together in various ways to create complex applications.

Dataflow-based architecture elegantly takes advantage of multicore processors on a single machine (scale up). It's also a good architecture for scaling out to multiple machines. Nodes that run across machine boundaries can communicate over data channels using network sockets. This provides the same simple, flexible dataflow programming model in a distributed configuration.

Dataflow and Big Data
The inherent pipeline parallelism built into dataflow programming makes dataflow great for datasets ranging from thousands to billions of records. Applications written using dataflow techniques can scale easily to extremely large data sizes, generally without much strain on the memory system as a dataflow application will eventually enter into a steady state of memory consumption. The overall amount of data pumped through the application doesn't affect that steady state memory size.

Not all dataflow operators are friendly when it comes to memory consumption. Many are designed specifically to load data into memory. For example a hash join operator may load one of its data sources into an in-memory index. This is the nature of the operator and must be taken into account when using it.

Being pipelined in nature also allows for great overlap of I/O and computational tasks. As mentioned earlier, this is an important "whole" application approach that is highly critical to success in building big data applications.

Dataflow systems are easily embeddable in the current commonly used systems. For instance, a dataflow-based application can easily be executed within the context of a Map-Reduce application. Experimentation with a dataflow-based platform named Pervasive DataRush has shown that the Hadoop system can be used to scale out an application using DataRush within each map step to help parallelize the mapper to take advantage of multicore efficiencies. Allowing each mapper to handle larger chunks of data allows the overall Map-Reduce application to run faster since each mapper is itself parallelized.

Summary
Dataflow is a software architecture that is based on the idea of continuous functions executing in parallel on data streams. It's focused on data-intensive applications, lending itself to today's big data challenges. Dataflow is easy to grasp and simple to express, and this design-time scalability can be as important as its run-time scalability.

Dataflow allows developers to easily take advantage of today's multicore processors and also fits well into a distributed environment. Tackling big data problems with dataflow is straightforward and ensures your applications will be able to scale in the future to meet the growing demands of your organization.

More Stories By Jim Falgout

Jim Falgout has 20+ years of large-scale software development experience and is active in the Java development community. As Chief Technologist for Pervasive DataRush, he’s responsible for setting innovative design principles that guide the company’s engineering teams as they develop new releases and products for partners and customers. He applied dataflow principles to help architect Pervasive DataRush.

Prior to Pervasive, Jim held senior positions with NexQL, Voyence Net Perceptions/KD1 Convex Computer, Sequel Systems and E-Systems. Jim has a B.Sc. (Cum Laude) in Computer Science from Nicholls State University. He can be reached at [email protected]

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
SYS-CON Events announced today that IDenticard will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. IDenticard™ is the security division of Brady Corp (NYSE: BRC), a $1.5 billion manufacturer of identification products. We have small-company values with the strength and stability of a major corporation. IDenticard offers local sales, support and service to our customers across the United States and Canada. Our partner network encompasses some 300 of the world's leading systems integrators and security s...
DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential.
“In the past year we've seen a lot of stabilization of WebRTC. You can now use it in production with a far greater degree of certainty. A lot of the real developments in the past year have been in things like the data channel, which will enable a whole new type of application," explained Peter Dunkley, Technical Director at Acision, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Events announced today that Windstream, a leading provider of advanced network and cloud communications, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Windstream (Nasdaq: WIN), a FORTUNE 500 and S&P 500 company, is a leading provider of advanced network communications, including cloud computing and managed services, to businesses nationwide. The company also offers broadband, phone and digital TV services to consumers primarily in rural areas.
The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo (http://www.CloudComputingExpo.com), moderated by Ashar Baig, Research Director, Cloud, at Gigaom Research, Nate Gordon, Director of T...
The Internet of Things is not new. Historically, smart businesses have used its basic concept of leveraging data to drive better decision making and have capitalized on those insights to realize additional revenue opportunities. So, what has changed to make the Internet of Things one of the hottest topics in tech? In his session at @ThingsExpo, Chris Gray, Director, Embedded and Internet of Things, discussed the underlying factors that are driving the economics of intelligent systems. Discover how hardware commoditization, the ubiquitous nature of connectivity, and the emergence of Big Data a...

ARMONK, N.Y., Nov. 20, 2014 /PRNewswire/ --  IBM (NYSE: IBM) today announced that it is bringing a greater level of control, security and flexibility to cloud-based application development and delivery with a single-tenant version of Bluemix, IBM's platform-as-a-service. The new platform enables developers to build ap...

"BSQUARE is in the business of selling software solutions for smart connected devices. It's obvious that IoT has moved from being a technology to being a fundamental part of business, and in the last 18 months people have said let's figure out how to do it and let's put some focus on it, " explained Dave Wagstaff, VP & Chief Architect, at BSQUARE Corporation, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
"People are a lot more knowledgeable about APIs now. There are two types of people who work with APIs - IT people who want to use APIs for something internal and the product managers who want to do something outside APIs for people to connect to them," explained Roberto Medrano, Executive Vice President at SOA Software, in this SYS-CON.tv interview at Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Nigeria has the largest economy in Africa, at more than US$500 billion, and ranks 23rd in the world. A recent re-evaluation of Nigeria's true economic size doubled the previous estimate, and brought it well ahead of South Africa, which is a member (unlike Nigeria) of the G20 club for political as well as economic reasons. Nigeria's economy can be said to be quite diverse from one point of view, but heavily dependent on oil and gas at the same time. Oil and natural gas account for about 15% of Nigera's overall economy, but traditionally represent more than 90% of the country's exports and as...
The Internet of Things is a misnomer. That implies that everything is on the Internet, and that simply should not be - especially for things that are blurring the line between medical devices that stimulate like a pacemaker and quantified self-sensors like a pedometer or pulse tracker. The mesh of things that we manage must be segmented into zones of trust for sensing data, transmitting data, receiving command and control administrative changes, and peer-to-peer mesh messaging. In his session at @ThingsExpo, Ryan Bagnulo, Solution Architect / Software Engineer at SOA Software, focused on desi...
"At our booth we are showing how to provide trust in the Internet of Things. Trust is where everything starts to become secure and trustworthy. Now with the scaling of the Internet of Things it becomes an interesting question – I've heard numbers from 200 billion devices next year up to a trillion in the next 10 to 15 years," explained Johannes Lintzen, Vice President of Sales at Utimaco, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
"For over 25 years we have been working with a lot of enterprise customers and we have seen how companies create applications. And now that we have moved to cloud computing, mobile, social and the Internet of Things, we see that the market needs a new way of creating applications," stated Jesse Shiah, CEO, President and Co-Founder of AgilePoint Inc., in this SYS-CON.tv interview at 15th Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Events announced today that Gridstore™, the leader in hyper-converged infrastructure purpose-built to optimize Microsoft workloads, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Gridstore™ is the leader in hyper-converged infrastructure purpose-built for Microsoft workloads and designed to accelerate applications in virtualized environments. Gridstore’s hyper-converged infrastructure is the industry’s first all flash version of HyperConverged Appliances that include both compute and storag...
Today’s enterprise is being driven by disruptive competitive and human capital requirements to provide enterprise application access through not only desktops, but also mobile devices. To retrofit existing programs across all these devices using traditional programming methods is very costly and time consuming – often prohibitively so. In his session at @ThingsExpo, Jesse Shiah, CEO, President, and Co-Founder of AgilePoint Inc., discussed how you can create applications that run on all mobile devices as well as laptops and desktops using a visual drag-and-drop application – and eForms-buildi...
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
Code Halos - aka "digital fingerprints" - are the key organizing principle to understand a) how dumb things become smart and b) how to monetize this dynamic. In his session at @ThingsExpo, Robert Brown, AVP, Center for the Future of Work at Cognizant Technology Solutions, outlined research, analysis and recommendations from his recently published book on this phenomena on the way leading edge organizations like GE and Disney are unlocking the Internet of Things opportunity and what steps your organization should be taking to position itself for the next platform of digital competition.
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
As the Internet of Things unfolds, mobile and wearable devices are blurring the line between physical and digital, integrating ever more closely with our interests, our routines, our daily lives. Contextual computing and smart, sensor-equipped spaces bring the potential to walk through a world that recognizes us and responds accordingly. We become continuous transmitters and receivers of data. In his session at @ThingsExpo, Andrew Bolwell, Director of Innovation for HP's Printing and Personal Systems Group, discussed how key attributes of mobile technology – touch input, sensors, social, and ...
In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect at GE, and Ibrahim Gokcen, who leads GE's advanced IoT analytics, focused on the Internet of Things / Industrial Internet and how to make it operational for business end-users. Learn about the challenges posed by machine and sensor data and how to marry it with enterprise data. They also discussed the tips and tricks to provide the Industrial Internet as an end-user consumable service using Big Data Analytics and Industrial Cloud.