Click here to close now.




















Welcome!

Java IoT Authors: Pat Romanski, Liz McMillan, Dana Gardner, Tim Hinds, Harry Trott

Related Topics: Java IoT, Microservices Expo, IBM Cloud, Microsoft Cloud

Java IoT: Article

The History of Programming

Programming really starts back around 2500 B.C. with the introduction of the Abacus

I've been programming since around 1982, first using an Apple in high school and then finally getting my first computer, the Timex Sinclair 1000 (2k of ROM and 2k of RAM), that same year. Both computers came with a form of the BASIC programming language and it was the start of my lifelong pursuit of trying to understand computers.

A few months ago, one of my good friends called and asked if I had a PowerPoint presentation on the history of programming. When I checked my extensive list of presentations, I noticed that I didn't have one, so that led me on a journey to create a presentation on that very subject.

However, where to start? Maybe 1940 or 1950? After thinking about it for a while I realized that's really not where programming started. You need to go way, way back to really understand the programming concept and where it came from. This led me to envision the world as a dark, almost black place with a small white light in the center... really the only light around was the small white light in the center and that light represented the idea: there has to be a better, more accurate, way to count and keep track of things for commerce.

Prehistoric Programming
To be honest, programming really starts back around 2500 B.C. with the introduction of the Abacus. It was the first mechanical calculator that had more capabilities than most people realize. Did you know that the Abacus was used to help the blind count? I guess it could be said that it was the first 508-compliant device, and it was also used to explain things like ASCII that came many years later.

I know what you're thinking - that this is "hardware" not "software," which is 100% correct, but it's also the start of thinking and implementing in a mechanized fashion. Remember, the use of zero (0) was not introduced for another 2000 years, binary was still 2200 years away and almost 2400 years away from having a mechanical machine to predict astronomical events such as eclipses.

It took many years after that to get things like a machine to do control sequences (60 AD), the first real program, the first Cryptography (850 AD), the first security, the first mechanized mechanical calculator (1640 AD) from Blasé Pascal, and the first use of punch cards (1725 AD) for use with looms.

As history points out, there were a lot of things that had to happen to get us to the point where we could start thinking of the concept of "programming." This concept of "programming" was really nothing more than the idea of a repeatable process for counting and manufacturing.

The Leap...
This lead to Charles Babbage's "Analytical Machine," which was a huge, and I mean monumental, leap of what was before and what would come after. Many books and articles have been written on the Babbage machine, but a few reminders are in order:

  • Used a concept of a program
  • Had read-only memory
  • Had the concept of a CPU
  • Used a form of punch cards
  • Could do conditional jumps
  • Would be powered by steam

This change was on the order of going from black and white television to the high definition, millions of colors, televisions of today. The only problem was the machine never worked! However, the thoughts of where it could go sparked a revolution in ideas around such machines.

The great philosopher Plato said it best; "Necessity... is the mother of invention." No truer statement was applied when in 1880 the U.S. Census needed a better way to count the population of the U.S. At that time, it took seven years to complete the counting for that Census and it was predicted that it would take over 10 years to count the next one. The problem was the U.S. Census is supposed to happen every 10 years, hence the problem.

The Census department held a contest to find a better method of counting and it was won by an employee called "Herman Hollerith" who went on to create the Tabulating Machine Company, which later became known as IBM. Now back to the 1880 Census. It counted the 62,622,250 people with the famous line: "finished months ahead of schedule and under budget." The idea for the punch cards that were used came not from history or the loom, but from the observation of railroad conductors who categorized passengers with a code when they punched the ticket.

The Birth of Programming
Things continued to progress with the German Z3 in 1943 that could do three to four additions per second. Then along came the IBM Automatic Sequence Controlled Calculator, which was a massive machine that was 51 feet long, weighed about five tons, and was made up of 750,000 parts. What kind of processing power did you get from this machine you may ask? It could handle numbers up to 23 digits with a plus sign and could process more than three or four add or subtracts per second, it could multiply in six seconds, divide in 15 seconds, and could do a logarithm or trig function in just over a minute, and by the by, this was all done on 24 column paper tape.

Finally in 1946, a real speed breakthrough occurred in processing with the ENIAC, which could do 5,000 simple add or subtracts per second. It could do real processing like Loops, Branches, and Subroutines and was programmed by six women moving cables and manipulating switches, and was one of the first machines to offer a debug process for a "single step" process.

The Dawn of Modern Programming
We started to get machine language that could be executed with switches and levers, but then came the dawn of SOAP. I'm not exactly talking about today's concept of SOAP (Simple Object Access Protocol), I'm talking about 1957's SOAP, and you know the one, Symbolic Optimal Assembly Program. While not as hip as today's SOAP, the 1957 version did add a lot for the programming world. Things like remembering numeric codes and addresses, large programs, and Assemblers are still used today; think about the Java JVM for example, which is written almost entirely in Assembler.

Around the same time as SOAP, a new language from IBM came onto the scene - Formula Translation or FORTRAN as it became known. This was really the first "general-purpose" language to hit the market. It was designed for numeric and scientific computing, but it could do a lot more and did. Today, Fortran 2008 (capitalization was removed in a later language specification) is the latest standard and still widely used, and it has influenced other, more modern languages used today, many that you most likely use from time to time.

A year later (1958), LISP (LISt Processing) came online and changed the way we think about data by introducing concepts of tree data structures, dynamic typing, and many others. It was originally designed to run on specialized LISP machines and has inspired another multitude of languages, for instance JavaScript.

Next came the dinosaur of languages, not because it's old, or extinct, but because it was and still is a giant when it comes to the number of people who have been exposed to it. I can only be writing about COBOL (Common Business-Oriented Language). Developed by IBM, the U.S. Government, and many others, this became the standard language used by businesses around the world. It's estimated that over a quarter of a trillion lines of COBOL are still in production today.

The Great Expanse in Software Language
The 1960s, from both general historical and a computer science point of view, were a radical time. New computer languages were being developed at a record pace. Take for example ALGOL, which spawned other languages such as B, Pascal, C, and Haskell. New thoughts like the introduction of Scripting languages like PL/1 that led to REXX and to the first DSL (Domain Specific Language) RPG for report generation were all new approaches to programming.

A culmination of things learned were put into a general programming language called BASIC (Beginner's All-purpose Symbolic Instruction Code), which ironically was way ahead of its time by releasing the compiler for free. It was also the first language to really be "snobbed" by the highly respected computer professionals around its approach to many things, with the biggest offense being the use of the GOTO statement.

Most likely the biggest addition to computer programming came in 1967 with the invention of Object-Oriented (OO) programming. OO programming was introduced with Simula, which introduced concepts of Objects, Classes, virtual methods, garbage collection, and many others. It took a very large step in helping abstract the complexities of the world into known items and simplified system decomposition. This paradigm alone is responsible for the most popular language in use today, C++. Thinking about C++, just how many other similar languages and constructs were invented or introduced?

There are many great languages that were introduced over the next couple of decades, languages that many of us use day-in and day-out. Some caught on while others faded into obscurity.  But it should be said that with the advent of development environments or IDEs, more code was written and generated and generally allowed the programmer using an environment to flourish. We are currently at a low-point for IDEs, but this too will most likely pass as new environments are introduced to remove or, at a very minimum, reduce the amount of code that needs to be written for the demanding customers of today.

Of course with the advent of Visual Basic, Delphi, C++, and Java, the world became a much easier place in which to program. Remember before Java, and way before .NET, the world was a much more diverse place in regards to programming languages. I have trade magazines from the early '90s where the discussion wasn't on Java or .NET but on the fastest compiler, the best GUIs, the best way to scale software. It was a different time.

The Land of the Mixers
Welcome to the land of mixers... what are mixers you might ask? Today we live in a world where one programming paradigm is not good enough for us to do our jobs. To be honest, there really has not been a new idea in programming since the early 1970s.

Most of the ideas were already thought of back in the 1960s. For a language to "catch" on today it has to, at a minimum, give a nod to the past or it will be labeled extreme and it needs to be somewhat familiar or it won't be understood. So languages like PHP, Ruby, Erlang, F#, and even GO really don't do anything that new or special.

I proclaim the current time, the land of mixers, because instead of coming up with something new, we now add from all different languages to create a new language. My current favorite example of a mixer language is Falcon (http://www.falconpl.org/). It states it is the following:

...an Open Source, simple, fast and powerful programming language, easy to learn and to feel comfortable with, and a scripting engine ready to empower mission-critical multithreaded applications.

Falcon provides six integrated programming paradigms: procedural, object oriented, prototype oriented, functional, tabular and message oriented. And you don't have to master all of them; you just need to pick the ingredients you prefer, and let the code to follow your inspiration.

Wow, I could not have said it better myself. Falcon is a true mixer language. There are dozens of other languages just like Falcon and many have less constraints, and Falcon has very few. On the one hand I can program any way I like, on the other I can program any way I like and that may not be good for the next person who will become responsible for my code someday. So this invariably leads to the next question...

What's Next?
Maybe a language that's different and based on Computational Theory is next, or maybe something completely off the wall is right around the corner and will change the way we develop software, change the way we think about software or maybe it will be another repackaging of the same things we do in other languages, just presented differently.

For over the past 50 years, we have been rehashing the same ideas over and over. Requirements are not shrinking and customer expectations are not withering, so whatever language you choose to complete a project, make sure you like it and it gets the job done.

Due to the size limitation of this piece, I had to leave out a lot of other languages. Some really cool ones, some really boring ones, and some I totally forgot to include. Keep an eye out as I plan on taking the presentation on the road to a conference here or there to get feedback, and most likely a recording of the full presentation in the future. I'm sure I forgot your favorite language, or I need to drop one of mine, but one thing is for sure, the history of programming is always morphing and that makes things really interesting.

More Stories By Mike Rozlog

Mike Rozlog is with Embarcadero Technologies. In this role, he is focused on ensuring the family of Delphi developer products being created by Embarcadero meets the expectations of developers around the world. Much of his time is dedicated to discussing and explaining the technical and business aspects of Embarcadero’s products and services to analysts and other audiences worldwide. Mike was formerly with CodeGear, a developer tools group that was acquired by Embarcadero in 2008. Previously, he spent more than eight years working for Borland in a number of positions, including a primary role as Chief Technical Architect. A reputed author, Mike has been published numerous times. His latest collaboration is Mastering JBuilder from John Wiley & Sons, Inc.

Comments (1) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
JulesLt 08/16/11 09:56:00 AM EDT

Few thoughts - I've always thought knitting patterns were an early form of programming language, complete with loops - and presumably pre-dating loops, which automated them with cards.

(And unlike, say, a recipe, it's a formal abstract language)

Secondly, we now know ENIAC was predated by work done throughout WW2, in both the US and UK, that was only declassified much later. But as far as I know, Manchester claims the title for the first computer to execute a program stored in memory - which was a major advance from calculating machines to computers.

Lastly - there was a good paper published in the 80s which made an interesting observation - which was that the leap from punched card/tape to VDU based programming was huge, but each additional leap (higher-level programming languages, interactive compilers, IDEs) has seen a smaller improvement in developer productivity.

He predicted that visual programming environments would not result in a massive leap forward - or enable non-programmers to program - because they were making a mistake about what the actual difficulty with programming was.

The author pointed out that most of the improvements have been around removing accidents (mistyping, referencing methods that do not exist) and in standardised code libraries - 15 years ago we wrote C at the TCP socket level - now we generate proxy objects against a WSDL and everything below that is taken care of.

In doing so, we get closer and closer to spending our time on the actual inherent complexity of the problem we are trying to solve. That the errors become increasingly errors in business logic or architectural, not code.

Or put another way - anything that can generate code IS a form of high-level programming language (and a general purpose CASE tool may be less productive that a DSL).

@ThingsExpo Stories
For IoT to grow as quickly as analyst firms’ project, a lot is going to fall on developers to quickly bring applications to market. But the lack of a standard development platform threatens to slow growth and make application development more time consuming and costly, much like we’ve seen in the mobile space. In his session at @ThingsExpo, Mike Weiner, Product Manager of the Omega DevCloud with KORE Telematics Inc., discussed the evolving requirements for developers as IoT matures and conducted a live demonstration of how quickly application development can happen when the need to comply wit...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at @ThingsExpo, James Kirkland, Red Hat's Chief Architect for the Internet of Things and Intelligent Systems, described how to revolutionize your archit...
SYS-CON Events announced today that HPM Networks will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. For 20 years, HPM Networks has been integrating technology solutions that solve complex business challenges. HPM Networks has designed solutions for both SMB and enterprise customers throughout the San Francisco Bay Area.
MuleSoft has announced the findings of its 2015 Connectivity Benchmark Report on the adoption and business impact of APIs. The findings suggest traditional businesses are quickly evolving into "composable enterprises" built out of hundreds of connected software services, applications and devices. Most are embracing the Internet of Things (IoT) and microservices technologies like Docker. A majority are integrating wearables, like smart watches, and more than half plan to generate revenue with APIs within the next year.
The Internet of Everything (IoE) brings together people, process, data and things to make networked connections more relevant and valuable than ever before – transforming information into knowledge and knowledge into wisdom. IoE creates new capabilities, richer experiences, and unprecedented opportunities to improve business and government operations, decision making and mission support capabilities.
Growth hacking is common for startups to make unheard-of progress in building their business. Career Hacks can help Geek Girls and those who support them (yes, that's you too, Dad!) to excel in this typically male-dominated world. Get ready to learn the facts: Is there a bias against women in the tech / developer communities? Why are women 50% of the workforce, but hold only 24% of the STEM or IT positions? Some beginnings of what to do about it! In her Opening Keynote at 16th Cloud Expo, Sandy Carter, IBM General Manager Cloud Ecosystem and Developers, and a Social Business Evangelist, d...
In his keynote at 16th Cloud Expo, Rodney Rogers, CEO of Virtustream, discussed the evolution of the company from inception to its recent acquisition by EMC – including personal insights, lessons learned (and some WTF moments) along the way. Learn how Virtustream’s unique approach of combining the economics and elasticity of the consumer cloud model with proper performance, application automation and security into a platform became a breakout success with enterprise customers and a natural fit for the EMC Federation.
The Internet of Things is not only adding billions of sensors and billions of terabytes to the Internet. It is also forcing a fundamental change in the way we envision Information Technology. For the first time, more data is being created by devices at the edge of the Internet rather than from centralized systems. What does this mean for today's IT professional? In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists addressed this very serious issue of profound change in the industry.
Discussions about cloud computing are evolving into discussions about enterprise IT in general. As enterprises increasingly migrate toward their own unique clouds, new issues such as the use of containers and microservices emerge to keep things interesting. In this Power Panel at 16th Cloud Expo, moderated by Conference Chair Roger Strukhoff, panelists addressed the state of cloud computing today, and what enterprise IT professionals need to know about how the latest topics and trends affect their organization.
It is one thing to build single industrial IoT applications, but what will it take to build the Smart Cities and truly society-changing applications of the future? The technology won’t be the problem, it will be the number of parties that need to work together and be aligned in their motivation to succeed. In his session at @ThingsExpo, Jason Mondanaro, Director, Product Management at Metanga, discussed how you can plan to cooperate, partner, and form lasting all-star teams to change the world and it starts with business models and monetization strategies.
Converging digital disruptions is creating a major sea change - Cisco calls this the Internet of Everything (IoE). IoE is the network connection of People, Process, Data and Things, fueled by Cloud, Mobile, Social, Analytics and Security, and it represents a $19Trillion value-at-stake over the next 10 years. In her keynote at @ThingsExpo, Manjula Talreja, VP of Cisco Consulting Services, discussed IoE and the enormous opportunities it provides to public and private firms alike. She will share what businesses must do to thrive in the IoE economy, citing examples from several industry sectors.
There will be 150 billion connected devices by 2020. New digital businesses have already disrupted value chains across every industry. APIs are at the center of the digital business. You need to understand what assets you have that can be exposed digitally, what their digital value chain is, and how to create an effective business model around that value chain to compete in this economy. No enterprise can be complacent and not engage in the digital economy. Learn how to be the disruptor and not the disruptee.
Akana has released Envision, an enhanced API analytics platform that helps enterprises mine critical insights across their digital eco-systems, understand their customers and partners and offer value-added personalized services. “In today’s digital economy, data-driven insights are proving to be a key differentiator for businesses. Understanding the data that is being tunneled through their APIs and how it can be used to optimize their business and operations is of paramount importance,” said Alistair Farquharson, CTO of Akana.
Business as usual for IT is evolving into a "Make or Buy" decision on a service-by-service conversation with input from the LOBs. How does your organization move forward with cloud? In his general session at 16th Cloud Expo, Paul Maravei, Regional Sales Manager, Hybrid Cloud and Managed Services at Cisco, discusses how Cisco and its partners offer a market-leading portfolio and ecosystem of cloud infrastructure and application services that allow you to uniquely and securely combine cloud business applications and services across multiple cloud delivery models.
The enterprise market will drive IoT device adoption over the next five years. In his session at @ThingsExpo, John Greenough, an analyst at BI Intelligence, division of Business Insider, analyzed how companies will adopt IoT products and the associated cost of adopting those products. John Greenough is the lead analyst covering the Internet of Things for BI Intelligence- Business Insider’s paid research service. Numerous IoT companies have cited his analysis of the IoT. Prior to joining BI Intelligence, he worked analyzing bank technology for Corporate Insight and The Clearing House Payment...
"Optimal Design is a technology integration and product development firm that specializes in connecting devices to the cloud," stated Joe Wascow, Co-Founder & CMO of Optimal Design, in this SYS-CON.tv interview at @ThingsExpo, held June 9-11, 2015, at the Javits Center in New York City.
SYS-CON Events announced today that CommVault has been named “Bronze Sponsor” of SYS-CON's 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. A singular vision – a belief in a better way to address current and future data management needs – guides CommVault in the development of Singular Information Management® solutions for high-performance data protection, universal availability and simplified management of data on complex storage networks. CommVault's exclusive single-platform architecture gives companies unp...
Electric Cloud and Arynga have announced a product integration partnership that will bring Continuous Delivery solutions to the automotive Internet-of-Things (IoT) market. The joint solution will help automotive manufacturers, OEMs and system integrators adopt DevOps automation and Continuous Delivery practices that reduce software build and release cycle times within the complex and specific parameters of embedded and IoT software systems.
"ciqada is a combined platform of hardware modules and server products that lets people take their existing devices or new devices and lets them be accessible over the Internet for their users," noted Geoff Engelstein of ciqada, a division of Mars International, in this SYS-CON.tv interview at @ThingsExpo, held June 9-11, 2015, at the Javits Center in New York City.
Internet of Things is moving from being a hype to a reality. Experts estimate that internet connected cars will grow to 152 million, while over 100 million internet connected wireless light bulbs and lamps will be operational by 2020. These and many other intriguing statistics highlight the importance of Internet powered devices and how market penetration is going to multiply many times over in the next few years.