Welcome!

Java IoT Authors: Elizabeth White, Pat Romanski, David Bermingham, Charlotte Spencer-Smith, Tim Hinds

Related Topics: Java IoT, Microservices Expo, Recurring Revenue

Java IoT: Book Excerpt

Book Excerpt: Java Application Profiling Tips and Tricks

Part 1 - Common types of performance issues

In the book Java Performance, Chapter 5, "Java Application Profiling," presented the basic concepts of using a modern Java profiler such as the Oracle Solaris Studio Performance Analyzer and NetBeans Profiler. It did not, however, show any specific tips and tricks in using the tools to identify performance issues and approaches of how to resolve them. This is the purpose of this excerpt. Its intention is to show how to use the tools to identify performance issues and take corrective actions to resolve them. This excerpt looks at several of the more common types of performance issues the authors have observed through many years of working as Java performance engineers.

Performance Opportunities
Most Java performance opportunities fall into one or more of the following categories:

•  Using a more efficient algorithm. The largest gains in the performance of an application come from the use of a more efficient algorithm. The use of a more efficient algorithm allows an application to execute with fewer CPU instructions, also known as a shorter path length. An application that executes with a shorter path length generally executes faster. Many different changes can lead to a shorter path length. At the highest level of the application, using a different data structure or modifying its implementation can lead to a shorter path length. Many applications that suffer application performance issues often use inappropriate data structures. There is no substitute for choosing the proper data structure and algorithm. As profiles are analyzed, take notice of the data structures and the algorithms used. Optimal performance can be realized when the best data structures and algorithms are utilized.

•  Reduce lock contention. Contending for access to a shared resource inhibits an application's capability to scale to a large number of software threads and across a large number of CPUs. Changes to an application that allow for less frequent lock contention and less duration of locking allow an application to scale better.

•  Generate more efficient code for a given algorithm. Clocks per CPU instruction, usually referred to as CPI, for an application is a ratio of the number of CPU clock ticks used per CPU instruction. CPI is a measure of the efficiency of generated code that is produced by a compiler. A change in the application, JVM, or operating system that reduces the CPI for an application will realize an improvement in its performance since it takes advantage of better and more optimized generated code.

There is a subtle difference between path length, which is closely tied to the algorithm choice, and cycles per instruction, CPI, which is the notion of generating more efficient code. In the former, the objective is to produce the shortest sequence of CPU instructions based on the algorithm choice. The latter's objective is to reduce the number of CPU clocks consumed per CPU instruction, that is, produce the most efficient code from a compiler. To illustrate with an example, suppose a CPU instruction results in a CPU cache miss, such as a load instruction. It may take several hundred CPU clock cycles for that load instruction to complete as a result of the CPU cache miss having to fetch data from memory rather than finding it in a CPU cache. However, if a prefetch instruction was inserted upstream in the sequence of instructions generated by a compiler to prefetch from memory the data being loaded by the load instruction, it is likely the number of clock cycles required to load the data will be less with the additional prefetch instruction since the prefetch can be done in parallel with other CPU instructions ahead of the load instruction. When the load instruction occurs, it can then find the data to be loaded in a CPU cache. However, the path length, the number of CPU instructions executed is longer as a result of the additional prefetch instruction. Therefore, it is possible to increase path length, yet make better use of available CPU cycles.

The following sections present several strategies to consider when analyzing a profile and looking for optimization opportunities. Generally, optimization opportunities for most applications fall into one of the general categories just described.

System or Kernel CPU Usage
Chapter 2, "Operating System Performance Monitoring," suggests one of the statistics to monitor is system or kernel CPU utilization. If CPU clock cycles are spent executing operating system or kernel code, those are CPU clock cycles that cannot be used to execute your application. Hence, a strategy to improve the performance of an application is to reduce the amount of time it spends consuming system or kernel CPU clock cycles. However, this strategy is not applicable in applications that spend little time executing system or kernel code. Monitoring the operating system for system or kernel CPU utilization provides the data as to whether it makes sense to employ this strategy.

The Oracle Solaris Performance Analyzer collects system or kernel CPU statistics as part of an application profile. This is done by selecting the View > Set Data Presentation menu in Performance Analyzer, choosing the Metrics tab, and setting the options to present system CPU utilization statistics, both inclusive or exclusive. Recall that inclusive metrics include not only the time spent in a given method, but also the time spent in methods it calls. In contrast, exclusive metrics report only the amount of time spent in a given method.

Tip
It can be useful to include both inclusive and exclusive metrics when first analyzing a profile. Looking at the inclusive metrics provides a sense of the path the application executes. Looking at the general path an application takes you may identify an opportunity for an alternative algorithm or approach that may offer better performance.

Figure 1 shows the Performance Analyzer's Set Data Presentation form with options selected to present both inclusive and exclusive System CPU metrics. Also notice the options selected report both the raw time value and the percentage of System CPU time.

Figure 1: Set system CPU data presentation

 

Figure 2: Exclusive system CPU

After clicking on the OK button, the Performance Analyzer displays the profile's System CPU inclusive and exclusive metrics in descending order. The arrow in the metric column header indicates how the data is presented and sorted. In Figure 2, the System CPU data is ordered by the exclusive metric (notice the arrow in the exclusive metric header and the icon indicating an exclusive metric).

Figure 2 shows a profile from an application that exhibits high system or kernel CPU utilization. You can see this application consumed about 33.5 seconds of System CPU in the java.io.FileOutputStream.write(int) method and about 11.6 seconds in a method called __write(), or about 65% and 22.5%, respectively. You can also get a sense of how significant the improvement can be realized by reducing the System CPU utilization of this application. The ideal situation for an application is to have 0% System CPU utilization. But for some applications that goal is difficult to achieve, especially if there is I/O involved, since I/O operations require a system call. In applications that require I/O, the goal is to reduce the frequency of making a system call. One approach to reduce the call frequency of an I/O system call is buffer the data so that larger chunks of data are read or written during I/O operations.

In the example shown in Figure 2, you can see the file write (output) operations are consuming a large amount of time as illustrated by the java.io.FileOutputStream.write(int) and __write() entries. To identify whether the write operations are buffered, you can use the Callers-Callees tab to walk up the call stack to see what methods are calling the FileOutputStream.write(int) method and the __write method. You walk up the call stack by selecting one of the callees from the upper panel and clicking the Set Center button. Figure 3 shows the Callers-Callees of the FileOutputStream.write(int) method.

The callers of FileOutputStream.write(int) are ExtOutputStream.write(int) and OutImpl.outc(int). 85.18% of the System CPU attributed to FileOutputStream.write(int) comes from its use in ExtOutputStream.write(int) and 14.82% of it from OutImpl.outc(int). A look at the implementation of ExtOutputStream.write(int) shows:

Figure 3: FileOutputStream.write(int) callers and callees

public void write(int b) throws IOException {
super.write(b);
writer.write((byte)b);
}
A look at the implementation of super.write(b) shows it is not a call to FileOutputStream.write(int):
public void write(int b) throws IOException {
crc = crc * 33 + b;
}

But the writer field in ExtOutputStream is declared as a FileOutputStream:

private FileOutputStream writer;

And it is initialized without any type of buffering:

writer = new FileOutputStream(currentFileName);
currentFileName is a field declared as a String:
private String currentFileName;

Hence, an optimization to be applied here is to buffer the data being written to FileOutputStream in ExtOutputStream using a BufferedOutputStream. This is done rather quickly and easily by chaining or wrapping the FileOutputStream in a BufferedOutputStream in an ExtOutputStream. Here is a quick listing of the changes required:

// Change FileOutputStream writer to a BufferedOutputStream
// private FileOutputStream writer;
private BufferedOutputStream writer;

Then chain a BufferedOutputStream and FileOutputStream at initialization time:

// Initialize BufferedOutputStream
// writer = new FileOutputStream(currentFileName);
writer = new BufferedOutputStream(
new FileOutputStream(currentFileName));

Writing to the BufferedOutputStream, instead of the FileOutputStream, in ExtOutputStream.write(int b) does not require any update since BufferOutputStream has a write() method that buffers bytes written to it. This ExtOutputStream.write(int b) method is shown here:

public void write(int b) throws IOException {
super.write(b);
// No update required here,
// automatically uses BufferedOutputStream.write()
writer.write((byte)b);

}

The other uses of the writer field must be inspected to ensure the use of BufferedOutputStream operates as expected. In ExtStreamOutput, there are two additional uses of the writer field, one in a method called reset() and another in checkResult(). These two methods are as follows:

public void reset() {
super.reset();
try {
if (diffOutputStream != null) {
diffOutputStream.flush();
diffOutputStream.close();
diffOutputStream = null;
}
if (writer != null) {
writer.close();

}
} catch (IOException e) {
e.printStackTrace();
}
}
public void checkResult(int loopNumber) {
try {
writer.flush();
writer.close();

} catch (IOException e) {
e.printStackTrace();
}
check(validiationProperties.getProperty(propertyName));
outProperties.put(propertyName, "" + getCRC());
reset();
}

The uses of writer as a BufferedOutputStream works as expected. It should be noted that the API specification for BufferedOutputStream.close() indicates it calls the BufferedOutputStream.flush() method and then calls the close() method of its underlying output stream, in this case the FileOutputStream.close() method. As a result, the FileOutputStream is not required to be explicitly closed, nor is the flush() method in ExtOutputStream.checkResult(int) required. A couple of additional enhancements worth consideration are:

1. A BufferedOutputStream can also be allocated with an optional buffered size. The default buffer size, as of Java 6, is 8192. If the application you are profiling is writing a large number of bytes, you might consider specifying an explicit size larger than 8192. If you specify an explicit size, consider a size that is a multiple of the operating systems page size since operating systems efficiently fetch memory that are multiples of the operating system page size. On Oracle Solaris, the pagesize command with no arguments reports the default page size. On Linux, the default page size can be obtained using the getconf PAGESIZE command. Windows on x86 and x64 platforms default to a 4K (4096) page size.

2. Change the ExtOutputStream.writer field from an explicit BufferedOutputStream type to an OutputStream type, that is, OutputStream writer = new BufferedOutputStream(), instead of BufferedOutputStream writer = new BufferedOutputStream(). This allows for additional flexibility in type of OutputStream, for example, ByteArrayOutputStream, DataOutputStream, FilterOutputStream, FileOutputStream, or BufferedOutputStream.

Looking back at Figure 3, a second method calls FileOutputStream.write(int) called org.w3c.tidy.OutImpl.outc(int), which is a method from a third-party library used in the profiled application. To reduce the amount of system CPU utilization used in a third-party supplied method, the best approach is to file a bug or enhancement request with the third-party library provider and include the information from the profile. If the source is accessible via an open source license and has acceptable license terms, you may consider further investigating and including additional information in the bug or enhancement request report.

After applying the changes identified in ExtOutputStream, using the BufferedOutputStream and its default constructor (not including the two additional enhancements just mentioned), and collecting a profile, the amount of system CPU utilization drops substantially.  Comparing the profiles in Figure 6-4 to those in Figure 6-2, you can see the amount of inclusive system CPU time spent in java.io.FileOutputStream has dropped from 45.182 seconds to 6.655 seconds (exclusive system CPU time is the second column).

Executing this application workload outside the profiler in a performance testing environment prior to making the modifications reports it took this application 427 seconds to run to completion.  In constrast, the modified version of the application workload that uses the BufferOutputStream in the same performance testing environment reports it runs to completion in 383 seconds. In other words, this application realized about a 10% improvement in its run to completion execution.

In addition, looking at the Callers-Callees tab for java.io.FileOutputStream.write(int), only the call to org.w3c.tidy.OutImpl.outc(int) remains as a significant consumer of the FileOutputStream.write(int) method. The Callers-Callees of FileOutputStream.write(int) are shown in Figure 6-5.

Figure 4: Reduced system CPU utilization

Figure 5: Callers-Callees after changes

Comparing the Callers-Callees in Figure 5, after the changes to ExtStream Output, with the Callers-Callees in Figure 3, prior to the changes, you can see the amount of attributable time spent in org.w3c.tidy.OutImpl.outc(int) stays close to the same. This should not be a surprise since the changes made to ExtStreamOutput now use BufferedOutputStream. But recall that the BufferedOutputStream invokes a FileOutputStream method when any of the underlying buffer in the BufferedOutputStream becomes full, the BufferedOutputStream.flush() method is called, or when the BufferedOutputSteam.close() method is called. If you look back at Figure 4 you see a FileOutputStream.writeBytes(byte[], int, int) method. This is the method that the BufferedOutputStream calls from ExtStreamOutput. Figure 6 shows the Callers-Callees tab for the FileOutputStream.writeBytes(byte[], int, int).

Selecting java.io.FileOutputStream.write(byte[], int, int) method from the upper Callee panel and clicking the Set Center button illustrates that BufferedOutputStream.flushBuffer() is its callee; see Figures 6 and 7.

Figure 6: Callers-Callees of FileOutputStream.writeBytes(byte[],int,int)

Figure 7: Callers-Callees of FileOutputStream.writeBytes(byte[], int, int)

Figure 8: Callers-Callees of BufferedOutputStream.flushBuffer()

Figure 9: Callers-Callees of BufferedOutputStream.write(int)

Selecting the BufferedOutputStream.flushBuffer() method in the upper Callee panel and clicking the Set Center button shows the callee of java.io.BufferedOutputStream.flushBuffer() is BufferedOutputStream.write(int). The Callers-Callees of BufferedOutputStream.flushBuffer() are shown in Figure 8.

Selecting the BufferedOutputStream.write(int) method in the upper Callee panel and clicking the Set Center button shows the callee of java.io.BufferedOutputStream.write(int) is ExtOutputStream.write(int), the method that has been modified. The Callers-Callees of BufferedOutputStream.write(int) are shown in Figure 9.

As mentioned earlier, the next step in reducing System CPU utilization for this application requires a modification to a third-party library, a library that holds the implementation of org.w3c.tidy.OutImpl.outc(int). It may be possible for the maintainers of the third-party library to implement a similar modification to OutImpl.outc(int) as just described and implemented for ExtOutputStream.write(int). However, the performance improvement realized will likely not be as significant since the profile suggests there is more System CPU utilization attributed to the call path of ExtOutputStream.write(int) than to OutImpl.outc(int); refer to Figure 6-3 for attributable System CPU utilization on callers of FileInputStream.write(int). In addition, looking at the amount of System CPU utilization consumed in OutImpl.outc(int), about 6.6 seconds, compared to the total application runtime of 383 seconds is rather small, about 1.5%. Hence, a modification to reduce the amount of System CPU utilization spent in OutImpl.outc(int) would likely not yield more than 1% to 2% improvement.

Tip
Applications that perform network I/O can employ a similar, general approach to reduce system CPU utilization as that just described in this section. That is, buffer both the data in the input and output stream used to write and read the data.

An additional strategy to reduce system CPU utilization for applications performing large amounts of network I/O is utilizing Java NIO nonblocking data structures. Java NIO was introduced in Java 1.4.2 with many runtime performance improvements added in Java 5 and Java 6. Java NIO nonblocking data structures allow for the ability to read or write as much data as possible in a single call to a network I/O (read or write) operation. Remember that every network I/O call eventually results in the invocation of an operating system's system call, which consumes system CPU utilization. The challenge with using Java NIO nonblocking data structures is it is more difficult to program than using blocking Java NIO or the older, more traditional Java SE blocking data structures such as java.net.Socket. In a Java NIO nonblocking output operation, you can write as many bytes as the operating system allows to be written. But you have to check the return value of the output operation to determine whether all the bytes you asked to be written have indeed been written. In a Java NIO nonblocking input operation, where you read as many bytes as are available, you have to check how many bytes have been read. You also have to implement some complex programming logic to deal with partially read protocol data units, or multiple protocol data units. That is, you may not be able to read enough bytes in a single read operation to construct a meaningful protocol data unit or message. In the case of blocking I/O, you simply wait until you generally read the specified number of bytes that constitute a full protocol data unit or message. Whether to migrate an application to utilize nonblocking network I/O operations should be decided upon by the application's performance needs. If you want to take advantage of the additional performance promised by using nonblocking Java NIO, you should consider using a general Java NIO framework to make the migration easier. Several popular Java NIO frameworks are available such as Project Grizzly and Apache MINA.

Another area where high System CPU utilization may show up is in applications experiencing heavy lock contention. Identifying lock contention in a profile and approaches to reduce lock contention are discussed in Part 2.

•   •   •

This excerpt is from the book, ‘Java Performance' by Charlie Hunt and Binu John, published in the Addison-Wesley Professional Java Series, ISBN 0137142528, Sept. 2011, Copyright 2012 Oracle America, Inc. For more info please visit: www.informit.com/title/0137142528

More Stories By Charlie Hunt

Charlie Hunt is the JVM performance lead engineer at Oracle. He is responsible for improving the performance of the HotSpot JVM and Java SE class libraries. He has also been involved in improving the performance of the Oracle GlassFish and Oracle WebLogic Server. A regular JavaOne speaker on Java performance, he also coauthored NetBeans™ IDE Field Guide (Prentice Hall, 2005).

More Stories By Binu John

Binu John is a senior performance engineer at Ning, Inc., where he focuses on improving the performance and scalability of the Ning platform to support millions of page views per month. Before that, he spent more than a decade working on Java-related performance issues at Sun Microsystems, where he served on Sun’s Enterprise Java Performance team. John has contributed to developing industry standard benchmarks such as SPECjms2007 and SPECJEnterprise2010; published several performance whitepapers; and contributed to java.net's XMLTest and WSTest benchmark projects.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
With an estimated 50 billion devices connected to the Internet by 2020, several industries will begin to expand their capabilities for retaining end point data at the edge to better utilize the range of data types and sheer volume of M2M data generated by the Internet of Things. In his session at @ThingsExpo, Don DeLoach, CEO and President of Infobright, will discuss the infrastructures businesses will need to implement to handle this explosion of data by providing specific use cases for filte...
Fortunately, meaningful and tangible business cases for IoT are plentiful in a broad array of industries and vertical markets. These range from simple warranty cost reduction for capital intensive assets, to minimizing downtime for vital business tools, to creating feedback loops improving product design, to improving and enhancing enterprise customer experiences. All of these business cases, which will be briefly explored in this session, hinge on cost effectively extracting relevant data from ...
SYS-CON Events announced today that VAI, a leading ERP software provider, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. VAI (Vormittag Associates, Inc.) is a leading independent mid-market ERP software developer renowned for its flexible solutions and ability to automate critical business functions for the distribution, manufacturing, specialty retail and service sectors. An IBM Premier Business Part...
SYS-CON Events announced today that Alert Logic, Inc., the leading provider of Security-as-a-Service solutions for the cloud, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Alert Logic, Inc., provides Security-as-a-Service for on-premises, cloud, and hybrid infrastructures, delivering deep security insight and continuous protection for customers at a lower cost than traditional security solutions. Ful...
SYS-CON Events announced today that Interoute, owner-operator of one of Europe's largest networks and a global cloud services platform, has been named “Bronze Sponsor” of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2015 at the Javits Center in New York, New York. Interoute is the owner-operator of one of Europe's largest networks and a global cloud services platform which encompasses 12 data centers, 14 virtual data centers and 31 colocation centers, with connections to 195 ad...
As enterprises work to take advantage of Big Data technologies, they frequently become distracted by product-level decisions. In most new Big Data builds this approach is completely counter-productive: it presupposes tools that may not be a fit for development teams, forces IT to take on the burden of evaluating and maintaining unfamiliar technology, and represents a major up-front expense. In his session at @BigDataExpo at @ThingsExpo, Andrew Warfield, CTO and Co-Founder of Coho Data, will dis...
SYS-CON Events announced today that Commvault, a global leader in enterprise data protection and information management, has been named “Bronze Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY, and the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Commvault is a leading provider of data protection and information management...
The cloud promises new levels of agility and cost-savings for Big Data, data warehousing and analytics. But it’s challenging to understand all the options – from IaaS and PaaS to newer services like HaaS (Hadoop as a Service) and BDaaS (Big Data as a Service). In her session at @BigDataExpo at @ThingsExpo, Hannah Smalltree, a director at Cazena, will provide an educational overview of emerging “as-a-service” options for Big Data in the cloud. This is critical background for IT and data profes...
With the Apple Watch making its way onto wrists all over the world, it’s only a matter of time before it becomes a staple in the workplace. In fact, Forrester reported that 68 percent of technology and business decision-makers characterize wearables as a top priority for 2015. Recognizing their business value early on, FinancialForce.com was the first to bring ERP to wearables, helping streamline communication across front and back office functions. In his session at @ThingsExpo, Kevin Roberts...
SYS-CON Events announced today that Fusion, a leading provider of cloud services, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Fusion, a leading provider of integrated cloud solutions to small, medium and large businesses, is the industry's single source for the cloud. Fusion's advanced, proprietary cloud service platform enables the integration of leading edge solutions in the cloud, including clou...
Most people haven’t heard the word, “gamification,” even though they probably, and perhaps unwittingly, participate in it every day. Gamification is “the process of adding games or game-like elements to something (as a task) so as to encourage participation.” Further, gamification is about bringing game mechanics – rules, constructs, processes, and methods – into the real world in an effort to engage people. In his session at @ThingsExpo, Robert Endo, owner and engagement manager of Intrepid D...
Eighty percent of a data scientist’s time is spent gathering and cleaning up data, and 80% of all data is unstructured and almost never analyzed. Cognitive computing, in combination with Big Data, is changing the equation by creating data reservoirs and using natural language processing to enable analysis of unstructured data sources. This is impacting every aspect of the analytics profession from how data is mined (and by whom) to how it is delivered. This is not some futuristic vision: it's ha...
WebRTC has had a real tough three or four years, and so have those working with it. Only a few short years ago, the development world were excited about WebRTC and proclaiming how awesome it was. You might have played with the technology a couple of years ago, only to find the extra infrastructure requirements were painful to implement and poorly documented. This probably left a bitter taste in your mouth, especially when things went wrong.
Learn how IoT, cloud, social networks and last but not least, humans, can be integrated into a seamless integration of cooperative organisms both cybernetic and biological. This has been enabled by recent advances in IoT device capabilities, messaging frameworks, presence and collaboration services, where devices can share information and make independent and human assisted decisions based upon social status from other entities. In his session at @ThingsExpo, Michael Heydt, founder of Seamless...
The IoT's basic concept of collecting data from as many sources possible to drive better decision making, create process innovation and realize additional revenue has been in use at large enterprises with deep pockets for decades. So what has changed? In his session at @ThingsExpo, Prasanna Sivaramakrishnan, Solutions Architect at Red Hat, discussed the impact commodity hardware, ubiquitous connectivity, and innovations in open source software are having on the connected universe of people, thi...
WebRTC: together these advances have created a perfect storm of technologies that are disrupting and transforming classic communications models and ecosystems. In his session at WebRTC Summit, Cary Bran, VP of Innovation and New Ventures at Plantronics and PLT Labs, provided an overview of this technological shift, including associated business and consumer communications impacts, and opportunities it may enable, complement or entirely transform.
For manufacturers, the Internet of Things (IoT) represents a jumping-off point for innovation, jobs, and revenue creation. But to adequately seize the opportunity, manufacturers must design devices that are interconnected, can continually sense their environment and process huge amounts of data. As a first step, manufacturers must embrace a new product development ecosystem in order to support these products.
There are so many tools and techniques for data analytics that even for a data scientist the choices, possible systems, and even the types of data can be daunting. In his session at @ThingsExpo, Chris Harrold, Global CTO for Big Data Solutions for EMC Corporation, showed how to perform a simple, but meaningful analysis of social sentiment data using freely available tools that take only minutes to download and install. Participants received the download information, scripts, and complete end-t...
Manufacturing connected IoT versions of traditional products requires more than multiple deep technology skills. It also requires a shift in mindset, to realize that connected, sensor-enabled “things” act more like services than what we usually think of as products. In his session at @ThingsExpo, David Friedman, CEO and co-founder of Ayla Networks, discussed how when sensors start generating detailed real-world data about products and how they’re being used, smart manufacturers can use the dat...
When it comes to IoT in the enterprise, namely the commercial building and hospitality markets, a benefit not getting the attention it deserves is energy efficiency, and IoT’s direct impact on a cleaner, greener environment when installed in smart buildings. Until now clean technology was offered piecemeal and led with point solutions that require significant systems integration to orchestrate and deploy. There didn't exist a 'top down' approach that can manage and monitor the way a Smart Buildi...