Welcome!

Java Authors: Pat Romanski, Elizabeth White, Carmen Gonzalez, Lori MacVittie, Nikita Ivanov

Related Topics: Cloud Expo

Cloud Expo: Blog Post

The Economics of Big Data: Why Faster Software is Cheaper

Faster means better and cheaper - lower latency and lower cost!

In big data computing, and more generally in all commercial highly parallel software systems, speed matters more than just about anything else. The reason is straightforward, and has been known for decades.

Put very simply, when it comes to massively parallel software of the kind need to handle big data, fast is both better AND cheaper. Faster means lower latency AND lower cost.

At first this may seem counterintuitive. A high-end sports car will be much faster than a standard family sedan, but the family sedan may be much cheaper. Cheaper to buy, and cheaper to run. But massively parallel software running on commodity hardware is a quite different type of product from a car. In general, the faster it goes, the cheaper it is to run.

Time Is Money
As has been noted many times in the history of computing, if you are a factor of 50x slower, then you will need 50x more nodes to run at the same speed (even assuming perfect parallelization), or your computation will need 50x more time. In either case, it will also be much more likely that you will experience at least one of your nodes crashing during a computation. This is not to argue that automatic fault tolerance and recovery should be ignored in the pursuit of speed, but rather that these two factors need to be carefully balanced. Good design in massively parallel systems is about achieving maximum speed along with the ability to recover from a given expected level of hardware failure, via checkpointing.

The key phrase here is "a given expected level of hardware failure". In certain types of peer-to-peer services which take advantage of idle PC capacity, it is necessary to assume that all machines are extremely unreliable and may go offline at any time. However, in a commercial big data cluster it may be reasonably asssumed that almost all machines will be available almost all of the time. This means that a much more optimistic point in the design space can be chosen, one which is designed much more for speed than for pathological failure scenarios.

The MapReduce model is an example of a model where speed has been sacrificed in a major way in order to achieve scalability on very unreliable hardware. As we have noted, while this is acceptable in certain types of free peer-to-peer services, it is much less acceptable in commercial big data systems deployed at scale.

Google, the inventors of the model, were the first to recognize the throughput and latency problems with the MapReduce model. To get the realtime performance they required, they recently replaced MapReduce in their Google Instant search engine.

The MapReduce model of Apache Hadoop is slow. In fact, it's very slow compared to, for example, the kinds of MPI or BSP clusters that have been routinely used in supercomputing for more than 15 years. On exactly the same hardware, MapReduce can be several orders of magnitude slower than MPI or BSP. By using MPI rather than MapReduce, HadoopBI gives customers the best possible big data solution, not only in terms of performance - massive throughput and extremely low latency - but also in terms of economics. HadoopBI is not just the fastest Big Data BI solution, it is also the cheapest at scale.

It's Free, But Is It Fast Enough?
Another frequently misunderstood element of big data economics concerns so-called "free" software. It has been argued by some that, since big data software needs to be run on many nodes, it is really important to have software that is free. Again this is an extreme oversimplification that ignores the dominant cost issues in big data economics. At large scale, software costs will in general be much smaller than hardware or cloud costs. And commercial software vendors should ensure that they are, if they want to stay in business.

Consider the following small-scale example. A company needs to process big data continuously in order to maximize competitive advantage. For simplicity, we will assume that the cost of running a single server (in-house or cloud) for one hour is $1, and that the company has a choice between two big data software systems - system A costs $1,000 per server and system B is free, but system A is 8x faster. Choosing system A, the company requires 5 servers, working continuously, to achieve the throughput required. However, if the company chooses system B, it will require 40 servers running continuously.

Simple arithmetic shows that within just six days, the initial cost of system A has been recovered, and from then on system A gives the company massive cost savings. Even if system A is only 2x or 3x faster and more efficient than system B, the initial cost will still be recovered in a matter of a few weeks.

The economic advantages of speed at scale are magnified even more in large-scale big data systems where, with volume licensing discounts, the payback time for super-fast software is even shorter.

The lesson of the above example is simple and very important. In parallel systems, speed at scale is king, as speed equates to efficiency, and efficiency equates to massive cost savings at scale. So, to be relevant for large scale production deployments, free parallel software has to be at least as fast and efficient as the best commercial software, otherwise the economics will be solidly against it. Some examples of free software, such as the Linux operating system, have achieved this goal. It remains to be seen whether this will also be the case with highly parallel big data software. In the meantime, it's important to remember that "free software is cheap, but fast software can be even cheaper".

More Stories By Bill McColl

Bill McColl left Oxford University to found Cloudscale. At Oxford he was Professor of Computer Science, Head of the Parallel Computing Research Center, and Chairman of the Computer Science Faculty. Along with Les Valiant of Harvard, he developed the BSP approach to parallel programming. He has led research, product, and business teams, in a number of areas: massively parallel algorithms and architectures, parallel programming languages and tools, datacenter virtualization, realtime stream processing, big data analytics, and cloud computing. He lives in Palo Alto, CA.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
WebRTC defines no default signaling protocol, causing fragmentation between WebRTC silos. SIP and XMPP provide possibilities, but come with considerable complexity and are not designed for use in a web environment. In his session at @ThingsExpo, Matthew Hodgson, technical co-founder of the Matrix.org, discussed how Matrix is a new non-profit Open Source Project that defines both a new HTTP-based standard for VoIP & IM signaling and provides reference implementations.
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
SYS-CON Events announced today that Gridstore™, the leader in hyper-converged infrastructure purpose-built to optimize Microsoft workloads, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Gridstore™ is the leader in hyper-converged infrastructure purpose-built for Microsoft workloads and designed to accelerate applications in virtualized environments. Gridstore’s hyper-converged infrastructure is the industry’s first all flash version of HyperConverged Appliances that include both compute and storag...
The 3rd International @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The Internet of Things (IoT) is the most profound change in personal and enterprise IT since the creation of the Worldwide Web more than 20 years ago. All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades.
"There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things promises to transform businesses (and lives), but navigating the business and technical path to success can be difficult to understand. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, demonstrated how to approach creating broadly successful connected customer solutions using real world business transformation studies including New England BioLabs and more.
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
There's Big Data, then there's really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at Big Data Expo®, Hannah Smalltree, Director at Treasure Data, discussed how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other machines...
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...