Welcome!

Java Authors: Roger Strukhoff, Lori MacVittie, Esmeralda Swartz, Trevor Parsons, Sandi Mappic

Related Topics: Java

Java: Article

Next-Gen Concurrency in Java: The Actor Model

Multiple concurrent processes can communicate with each other without needing to use shared state variables

At a time where the clock speeds of processors have been stable over the past couple of years, and Moore's Law is instead being applied by increasing the number of processor cores, it is getting more important for applications to use concurrent processing to reduce run/response times, as the time slicing routine via increased clock speed will no longer be available to bail out slow running programs.

Carl Hewitt proposed the Actor Model in 1973 as a way to implement unbounded nondeterminism in concurrent processing. In many ways this model was influenced by the packet switching mechanism, for example, no synchronous handshake between sender and receiver, inherently concurrent message passing, messages may not arrive in the order they were sent, addresses are stored in messages, etc.

The main difference between this model and most other parallel processing systems is that it uses message passing instead of shared variables for communication between concurrent processes. Using shared memory to communicate between concurrent processes requires the application of some form of locking mechanism to coordinate between threads, which may give rise to live locks, deadlocks, race conditions and starvation.

Actors are the location transparent primitives that form the basis of the actor model. Each actor is associated with a mailbox (which is a queue with multiple producers and a single consumer) where it receives and buffers messages, and a behavior that is executed as a reaction to a message received. The messages are immutable and may be passed between actors synchronously or asynchronously depending on the type of operation being invoked. In response to a message that it receives, an actor can make local decisions, create more actors, send more messages, and designate how to respond to the next message received. Actors never share state and thus don't need to compete for locks for access to shared data.

The actor model first rose to fame in the language Erlang, designed by Ericcson in 1986. It has since been implemented in many next-generation languages on the JVM such as Scala, Groovy and Fantom. It is the simplicity of usage provided via a higher level of abstraction that makes the actor model easier to implement and reason about.

It's now possible to implement the actor model in Java, thanks to the growing number of third-party concurrency libraries advertising this feature. Akka is one such library, written in Scala, that uses the Actor model to simplify writing fault-tolerant, highly scalable applications in both Java and Scala.

Implementation
Using Akka, we shall attempt to create a concurrent processing system for loan request processing in a bank as can be seen in the Figure 1.

Figure 1

The system consists of four actors:

  1. The front desk - which shall receive loan requests from the customers and send them to the back office for processing. It shall also maintain the statistics of the number of loans accepted/rejected and print a report detailing the same on being asked to do so.
  2. The back office - which shall sort the loan requests into personal loans and home loans, and send them to the corresponding accountant for approval/rejection.
  3. The personal loan accountant - who shall process personal loan requests, including approving/rejecting the requests, carrying out credit history checks and calculating the rate of interest.
  4. The home loan accountant - who shall process home loan requests, including approving/rejecting the requests, carrying out credit history checks and calculating the rate of interest.

To get started, download the version 2.0 of Akka for Java from http://akka.io/downloads and add the jars present in ‘akka-2.0-RC4\lib' to the classpath.

Next, create a new Java class "Bank.java" and add the following import statements :

import akka.actor.ActorRef;

import akka.actor.ActorSystem;

import akka.actor.Props;

import akka.actor.UntypedActor;

import akka.routing.RoundRobinRouter;

Now, create a few static nested classes under ‘Bank' that will act as messages (DTOs) and be passed to actors.

1. ‘LoanRequest' will contain the following elements and their corresponding getters/setters:

int requestedLoan;
int
accountBalance;

2. ‘PersonalLoanRequest' will extend ‘LoanRequest' and contain the following element and its corresponding getter:

final static String type="Personal";

3. ‘HomeLoanRequest' will extend ‘LoanRequest' and contain the following element and its corresponding getter:

final static String type="Home";

4. ‘LoanReply' will contain the following elements and their corresponding getters/setters:

String type;
boolean
approved;
int
rate;

Next, create a static nested class ‘PersonalLoanAccountant' under ‘Bank'.

public static class PersonalLoanAccountant extends UntypedActor {
public
int rateCaluclation(int requestedLoan, int accountBalance) {
if
(accountBalance/requestedLoan>=2)
return
5;
else

return
6;
}

public
void checkCreditHistory() {
for
(int i=0; i<1000; i++) {
continue
;
}
}
public
void onReceive(Object message) {
if
(message instanceof PersonalLoanRequest) {
PersonalLoanRequest request=PersonalLoanRequest.class.cast(message);
LoanReply reply = new LoanReply();
reply.setType(request.getType());
if
(request.getRequestedLoan()<request.getaccountBalance()) {
reply.setApproved(true);
reply.setRate(rateCaluclation(request.getRequestedLoan(), request.getaccountBalance()));
checkCreditHistory();
}
getSender().tell(reply);
} else {
unhandled(message);
}
}
}

The above class  serves as an actor in the system. It extends the ‘UntypedActor' base class provided by Akka and must define its ‘onReceive‘ method. This method acts as the mailbox and receives messages from other actors (or non-actors) in the system. If the message received is of type 'PersonalLoanRequest', then it can be processed by approving/rejecting the loan request, setting the rate of interest and checking the requestor's credit history. Once the processing is complete, the requestor uses the sender's reference (which is embedded in the message) to send the reply (LoanReply) to the requestor via the ‘getSender().tell()' method.

Now, create a similar static nested class ‘HomeLoanAccountant' under ‘Bank'

public static class HomeLoanAccountant extends UntypedActor {
public
int rateCaluclation(int requestedLoan, int accountBalance) {
if
(accountBalance/requestedLoan>=2)
return
7;
else

return
8;
}

public
void checkCreditHistory() {
for
(int i=0; i<2000; i++) {
continue
;
}
}
public
void onReceive(Object message) {
if
(message instanceof HomeLoanRequest) {
HomeLoanRequest request=HomeLoanRequest.class.cast(message);
LoanReply reply = new LoanReply();
reply.setType(request.getType());
if
(request.getRequestedLoan()<request.getaccountBalance()) {
reply.setApproved(true);
reply.setRate(rateCaluclation(request.getRequestedLoan(), request.getaccountBalance()));
checkCreditHistory();
}
getSender().tell(reply);
} else {
unhandled(message);
}
}
}

Now, create a static nested class ‘BackOffice' under ‘Bank':

public static class BackOffice extends UntypedActor {

ActorRef personalLoanAccountant=getContext().actorOf(new Props(PersonalLoanAccountant.class).withRouter(new RoundRobinRouter(2)));
ActorRef homeLoanAccountant=getContext().actorOf(new Props(HomeLoanAccountant.class).withRouter(new RoundRobinRouter(2)));

public void onReceive(Object message) {
if
(message instanceof PersonalLoanRequest) {
personalLoanAccountant.forward(message, getContext());
} else if (message instanceof HomeLoanRequest) {
homeLoanAccountant.forward(message, getContext());
} else {
unhandled(message);
}
}

}

The above class serves as an actor in the system and is purely used to route the incoming messages to PersonalLoanAccountant or HomeLoanAccountant, based on the type of message received. It defines actor references ‘personalLoanAccountant' and ‘homeLoanAccountant' to ‘PersonalLoanAccountant.class' and ‘HomeLoanAccountant.class', respectively. Each of these references initiates two instances of the actor it refers to and attaches a round-robin router to cycle through the actor instances. The ‘onReceive' method checks the type of the message received and forwards the message to either ‘PersonalLoanAccountant' or ‘HomeLoanAccountant' based on the message type. The ‘forward()' method helps ensure that the reference of the original sender is maintained in the message, so the receiver of the message (‘PersonalLoanAccountant' or ‘HomeLoanAccountant') can directly reply back to the message's original sender.

Now, create a static nested class ‘FrontDesk' under ‘Bank':

public static class FrontDesk extends UntypedActor {
int
approvedPersonalLoans=0;
int
approvedHomeLoans=0;
int
rejectedPersonalLoans=0;
int
rejectedHomeLoans=0;

ActorRef backOffice=getContext().actorOf(
new Props(BackOffice.class), "backOffice");

public
void maintainLoanApprovalStats(Object message) {
LoanReply reply = LoanReply.class.cast(message);
if
(reply.isApproved()) {
System.out.println(reply.getType()+" Loan Approved"+" at "+reply.getRate()+"% interest.");
if
(reply.getType().equals("Personal"))
++approvedPersonalLoans;
else
if(reply.getType().equals("Home"))
++approvedHomeLoans;
} else {
System.out.println(reply.getType()+" Loan Rejected");
if
(reply.getType().equals("Personal"))
++rejectedPersonalLoans;
else
if(reply.getType().equals("Home"))
++rejectedHomeLoans;
}
}

public void printLoanApprovalStats() {
System.out.println("--- REPORT ---");
System.out.println("Personal Loans Approved : "+approvedPersonalLoans);
System.out.println("Home Loans Approved : "+approvedHomeLoans);
System.out.println("Personal Loans Rejected : "+rejectedPersonalLoans);
System.out.println("Home Loans Rejected : "+rejectedHomeLoans);
}
public
void onReceive(Object message) {
if
(message instanceof LoanRequest) {
backOffice.tell(message, getSelf());
} else if (message instanceof LoanReply) {
maintainLoanApprovalStats(message);
} else if(message instanceof String && message.equals("printLoanApprovalStats")) {
printLoanApprovalStats();
getContext().stop(getSelf());
} else {
unhandled(message);
}
}
}

The above class serves as the final actor in the system. It creates a reference ‘backOffice' to the actor ‘BackOffice.class'. If the message received is of type ‘LoanRequest', it sends the message to ‘BackOffice' via the method ‘backOffice.tell()', which takes a message and the reference to the sender (acquired through the method ‘getSelf()') as arguments. If the message received is of type ‘LoanReply', it updates the counters to maintain the approved/rejected counts. If the message received is "printLoanApprovalStats", it prints the stats stored in the counters, and then proceeds to stop itself via the method ‘getContext().stop(getSelf())'. The actors follow a pattern of supervisor hierarchy, and thus this command trickles down the hierarchy chain and stops all four actors in the system.

Finally, write a few methods under ‘Bank' to submit requests to the ‘FrontOffice':

public static void main(String[] args) throws InterruptedException {
ActorSystem system = ActorSystem.create("bankSystem");
ActorRef frontDesk = system.actorOf(new Props(FrontDesk.class), "frontDesk");
submitLoanRequests
(frontDesk);
Thread.sleep(1000);
printLoanApprovalStats
(frontDesk);
system.shutdown();
}

public
static PersonalLoanRequest getPersonalLoanRequest() {
int
min=10000; int max=50000;
int
amount=min + (int)(Math.random() * ((max - min) + 1));
int
balance=min + (int)(Math.random() * ((max - min) + 1));
return
(new Bank()).new PersonalLoanRequest(amount, balance);
}

public
static HomeLoanRequest getHomeLoanRequest() {
int
min=50000; int max=90000;
int
amount=min + (int)(Math.random() * ((max - min) + 1));
int
balance=min + (int)(Math.random() * ((max - min) + 1));
return
(new Bank()).new HomeLoanRequest(amount, balance);
}

public static void submitLoanRequests(ActorRef frontDesk) {
for
(int i=0;i<1000;i++) {
frontDesk.tell(getPersonalLoanRequest());
frontDesk.tell(getHomeLoanRequest());
}
}

public static void printLoanApprovalStats(ActorRef frontDesk) {
frontDesk.tell("printLoanApprovalStats");
}

The method ‘main' creates an actor system ‘system' using the method ‘ActorSystem.create()'. It then creates a reference ‘frontDesk' to the actor ‘FrontDesk.class'. It uses this reference to send a 1000 requests each of types ‘PersonalLoanRequest' and ‘HomeLoanRequest' to ‘FrontDesk'. It then sleeps for a second, following which it sends the message "printLoanApprovalStats" to ‘FrontDesk'. Once done, it shuts down the actor system via the method ‘system.shutdown()'.

Conclusion
Running the above code will create a loan request processing system with concurrent processing capabilities, and all this without using a single synchronize/lock pattern. Moreover, the code doesn't need one to go into the low-level semantics of the JVM threading mechanism or use the complex ‘java.util.concurrent' package. This mechanism of concurrent processing using the Actor Model is truly more robust as multiple concurrent processes can communicate with each other without needing to use shared state variables.

More Stories By Sanat Vij

Sanat Vij is a professional software engineer currently working at CenturyLink. He has vast experience in developing high availability applications, configuring application servers, JVM profiling and memory management. He specializes in performance tuning of applications, reducing response times, and increasing stability.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, will describe how to revoluti...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at Internet of @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, will discuss how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money! Speaker Bio: Esmeralda Swartz, CMO of MetraTech, has spent 16 years as a marketing, product management, and busin...
Samsung VP Jacopo Lenzi, who headed the company's recent SmartThings acquisition under the auspices of Samsung's Open Innovaction Center (OIC), answered a few questions we had about the deal. This interview was in conjunction with our interview with SmartThings CEO Alex Hawkinson. IoT Journal: SmartThings was developed in an open, standards-agnostic platform, and will now be part of Samsung's Open Innovation Center. Can you elaborate on your commitment to keep the platform open? Jacopo Lenzi: Samsung recognizes that true, accelerated innovation cannot be driven from one source, but requires a...
SYS-CON Events announced today that Red Hat, the world's leading provider of open source solutions, will exhibit at Internet of @ThingsExpo, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Red Hat is the world's leading provider of open source software solutions, using a community-powered approach to reliable and high-performing cloud, Linux, middleware, storage and virtualization technologies. Red Hat also offers award-winning support, training, and consulting services. As the connective hub in a global network of enterprises, partners, a...
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at Internet of @ThingsExpo, Robin Raymond, Chief Architect at Hookflash Inc., will walk through the shifting landscape of traditional telephone a...
BSQUARE is a global leader of embedded software solutions. We enable smart connected systems at the device level and beyond that millions use every day and provide actionable data solutions for the growing Internet of Things (IoT) market. We empower our world-class customers with our products, services and solutions to achieve innovation and success. For more information, visit www.bsquare.com.
SYS-CON Events announced today that Matrix.org has been named “Silver Sponsor” of Internet of @ThingsExpo, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Matrix is an ambitious new open standard for open, distributed, real-time communication over IP. It defines a new approach for interoperable Instant Messaging and VoIP based on pragmatic HTTP APIs and WebRTC, and provides open source reference implementations to showcase and bootstrap the new standard. Our focus is on simplicity, security, and supporting the fullest feature set.
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic • Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it’s a mix of architectural style...
SYS-CON Events announced today that SOA Software, an API management leader, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. SOA Software is a leading provider of API Management and SOA Governance products that equip business to deliver APIs and SOA together to drive their company to meet its business strategy quickly and effectively. SOA Software’s technology helps businesses to accelerate their digital channels with APIs, drive partner adoption, monetize their assets, and achieve a...
From a software development perspective IoT is about programming "things," about connecting them with each other or integrating them with existing applications. In his session at @ThingsExpo, Yakov Fain, co-founder of Farata Systems and SuranceBay, will show you how small IoT-enabled devices from multiple manufacturers can be integrated into the workflow of an enterprise application. This is a practical demo of building a framework and components in HTML/Java/Mobile technologies to serve as a platform that can integrate new devices as they become available on the market.
SYS-CON Events announced today that Utimaco will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Utimaco is a leading manufacturer of hardware based security solutions that provide the root of trust to keep cryptographic keys safe, secure critical digital infrastructures and protect high value data assets. Only Utimaco delivers a general-purpose hardware security module (HSM) as a customizable platform to easily integrate into existing software solutions, embed business logic and build s...
Connected devices are changing the way we go about our everyday life, from wearables to driverless cars, to smart grids and entire industries revolutionizing business opportunities through smart objects, capable of two-way communication. But what happens when objects are given an IP-address, and we rely on that connection, sometimes with our lives? How do we secure those vast data infrastructures and safe-keep the privacy of sensitive information? This session will outline how each and every connected device can uphold a core root of trust via a unique cryptographic signature – a “bir...
Internet of @ThingsExpo Silicon Valley announced on Thursday its first 12 all-star speakers and sessions for its upcoming event, which will take place November 4-6, 2014, at the Santa Clara Convention Center in California. @ThingsExpo, the first and largest IoT event in the world, debuted at the Javits Center in New York City in June 10-12, 2014 with over 6,000 delegates attending the conference. Among the first 12 announced world class speakers, IBM will present two highly popular IoT sessions, which will take place November 4-6, 2014 at the Santa Clara Convention Center in Santa Clara, Calif...
Almost everyone sees the potential of Internet of Things but how can businesses truly unlock that potential. The key will be in the ability to discover business insight in the midst of an ocean of Big Data generated from billions of embedded devices via Systems of Discover. Businesses will also need to ensure that they can sustain that insight by leveraging the cloud for global reach, scale and elasticity.
WebRTC defines no default signaling protocol, causing fragmentation between WebRTC silos. SIP and XMPP provide possibilities, but come with considerable complexity and are not designed for use in a web environment. In his session at Internet of @ThingsExpo, Matthew Hodgson, technical co-founder of the Matrix.org, will discuss how Matrix is a new non-profit Open Source Project that defines both a new HTTP-based standard for VoIP & IM signaling and provides reference implementations.

SUNNYVALE, Calif., Oct. 20, 2014 /PRNewswire/ -- Spansion Inc. (NYSE: CODE), a global leader in embedded systems, today added 96 new products to the Spansion® FM4 Family of flexible microcontrollers (MCUs). Based on the ARM® Cortex®-M4F core, the new MCUs boast a 200 MHz operating frequency and support a diverse set of on-chip peripherals for enhanced human machine interfaces (HMIs) and machine-to-machine (M2M) communications. The rich set of periphera...

SYS-CON Events announced today that Aria Systems, the recurring revenue expert, has been named "Bronze Sponsor" of SYS-CON's 15th International Cloud Expo®, which will take place on November 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Aria Systems helps leading businesses connect their customers with the products and services they love. Industry leaders like Pitney Bowes, Experian, AAA NCNU, VMware, HootSuite and many others choose Aria to power their recurring revenue business and deliver exceptional experiences to their customers.
The Internet of Things (IoT) is going to require a new way of thinking and of developing software for speed, security and innovation. This requires IT leaders to balance business as usual while anticipating for the next market and technology trends. Cloud provides the right IT asset portfolio to help today’s IT leaders manage the old and prepare for the new. Today the cloud conversation is evolving from private and public to hybrid. This session will provide use cases and insights to reinforce the value of the network in helping organizations to maximize their company’s cloud experience.
The Internet of Things (IoT) is making everything it touches smarter – smart devices, smart cars and smart cities. And lucky us, we’re just beginning to reap the benefits as we work toward a networked society. However, this technology-driven innovation is impacting more than just individuals. The IoT has an environmental impact as well, which brings us to the theme of this month’s #IoTuesday Twitter chat. The ability to remove inefficiencies through connected objects is driving change throughout every sector, including waste management. BigBelly Solar, located just outside of Boston, is trans...
SYS-CON Events announced today that Matrix.org has been named “Silver Sponsor” of Internet of @ThingsExpo, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Matrix is an ambitious new open standard for open, distributed, real-time communication over IP. It defines a new approach for interoperable Instant Messaging and VoIP based on pragmatic HTTP APIs and WebRTC, and provides open source reference implementations to showcase and bootstrap the new standard. Our focus is on simplicity, security, and supporting the fullest feature set.