Welcome!

Java IoT Authors: Elizabeth White, Liz McMillan, AppDynamics Blog, Pat Romanski, Cloud Best Practices Network

Related Topics: Java IoT

Java IoT: Article

Next-Gen Concurrency in Java: The Actor Model

Multiple concurrent processes can communicate with each other without needing to use shared state variables

At a time where the clock speeds of processors have been stable over the past couple of years, and Moore's Law is instead being applied by increasing the number of processor cores, it is getting more important for applications to use concurrent processing to reduce run/response times, as the time slicing routine via increased clock speed will no longer be available to bail out slow running programs.

Carl Hewitt proposed the Actor Model in 1973 as a way to implement unbounded nondeterminism in concurrent processing. In many ways this model was influenced by the packet switching mechanism, for example, no synchronous handshake between sender and receiver, inherently concurrent message passing, messages may not arrive in the order they were sent, addresses are stored in messages, etc.

The main difference between this model and most other parallel processing systems is that it uses message passing instead of shared variables for communication between concurrent processes. Using shared memory to communicate between concurrent processes requires the application of some form of locking mechanism to coordinate between threads, which may give rise to live locks, deadlocks, race conditions and starvation.

Actors are the location transparent primitives that form the basis of the actor model. Each actor is associated with a mailbox (which is a queue with multiple producers and a single consumer) where it receives and buffers messages, and a behavior that is executed as a reaction to a message received. The messages are immutable and may be passed between actors synchronously or asynchronously depending on the type of operation being invoked. In response to a message that it receives, an actor can make local decisions, create more actors, send more messages, and designate how to respond to the next message received. Actors never share state and thus don't need to compete for locks for access to shared data.

The actor model first rose to fame in the language Erlang, designed by Ericcson in 1986. It has since been implemented in many next-generation languages on the JVM such as Scala, Groovy and Fantom. It is the simplicity of usage provided via a higher level of abstraction that makes the actor model easier to implement and reason about.

It's now possible to implement the actor model in Java, thanks to the growing number of third-party concurrency libraries advertising this feature. Akka is one such library, written in Scala, that uses the Actor model to simplify writing fault-tolerant, highly scalable applications in both Java and Scala.

Implementation
Using Akka, we shall attempt to create a concurrent processing system for loan request processing in a bank as can be seen in the Figure 1.

Figure 1

The system consists of four actors:

  1. The front desk - which shall receive loan requests from the customers and send them to the back office for processing. It shall also maintain the statistics of the number of loans accepted/rejected and print a report detailing the same on being asked to do so.
  2. The back office - which shall sort the loan requests into personal loans and home loans, and send them to the corresponding accountant for approval/rejection.
  3. The personal loan accountant - who shall process personal loan requests, including approving/rejecting the requests, carrying out credit history checks and calculating the rate of interest.
  4. The home loan accountant - who shall process home loan requests, including approving/rejecting the requests, carrying out credit history checks and calculating the rate of interest.

To get started, download the version 2.0 of Akka for Java from http://akka.io/downloads and add the jars present in ‘akka-2.0-RC4\lib' to the classpath.

Next, create a new Java class "Bank.java" and add the following import statements :

import akka.actor.ActorRef;

import akka.actor.ActorSystem;

import akka.actor.Props;

import akka.actor.UntypedActor;

import akka.routing.RoundRobinRouter;

Now, create a few static nested classes under ‘Bank' that will act as messages (DTOs) and be passed to actors.

1. ‘LoanRequest' will contain the following elements and their corresponding getters/setters:

int requestedLoan;
int
accountBalance;

2. ‘PersonalLoanRequest' will extend ‘LoanRequest' and contain the following element and its corresponding getter:

final static String type="Personal";

3. ‘HomeLoanRequest' will extend ‘LoanRequest' and contain the following element and its corresponding getter:

final static String type="Home";

4. ‘LoanReply' will contain the following elements and their corresponding getters/setters:

String type;
boolean
approved;
int
rate;

Next, create a static nested class ‘PersonalLoanAccountant' under ‘Bank'.

public static class PersonalLoanAccountant extends UntypedActor {
public
int rateCaluclation(int requestedLoan, int accountBalance) {
if
(accountBalance/requestedLoan>=2)
return
5;
else

return
6;
}

public
void checkCreditHistory() {
for
(int i=0; i<1000; i++) {
continue
;
}
}
public
void onReceive(Object message) {
if
(message instanceof PersonalLoanRequest) {
PersonalLoanRequest request=PersonalLoanRequest.class.cast(message);
LoanReply reply = new LoanReply();
reply.setType(request.getType());
if
(request.getRequestedLoan()<request.getaccountBalance()) {
reply.setApproved(true);
reply.setRate(rateCaluclation(request.getRequestedLoan(), request.getaccountBalance()));
checkCreditHistory();
}
getSender().tell(reply);
} else {
unhandled(message);
}
}
}

The above class  serves as an actor in the system. It extends the ‘UntypedActor' base class provided by Akka and must define its ‘onReceive‘ method. This method acts as the mailbox and receives messages from other actors (or non-actors) in the system. If the message received is of type 'PersonalLoanRequest', then it can be processed by approving/rejecting the loan request, setting the rate of interest and checking the requestor's credit history. Once the processing is complete, the requestor uses the sender's reference (which is embedded in the message) to send the reply (LoanReply) to the requestor via the ‘getSender().tell()' method.

Now, create a similar static nested class ‘HomeLoanAccountant' under ‘Bank'

public static class HomeLoanAccountant extends UntypedActor {
public
int rateCaluclation(int requestedLoan, int accountBalance) {
if
(accountBalance/requestedLoan>=2)
return
7;
else

return
8;
}

public
void checkCreditHistory() {
for
(int i=0; i<2000; i++) {
continue
;
}
}
public
void onReceive(Object message) {
if
(message instanceof HomeLoanRequest) {
HomeLoanRequest request=HomeLoanRequest.class.cast(message);
LoanReply reply = new LoanReply();
reply.setType(request.getType());
if
(request.getRequestedLoan()<request.getaccountBalance()) {
reply.setApproved(true);
reply.setRate(rateCaluclation(request.getRequestedLoan(), request.getaccountBalance()));
checkCreditHistory();
}
getSender().tell(reply);
} else {
unhandled(message);
}
}
}

Now, create a static nested class ‘BackOffice' under ‘Bank':

public static class BackOffice extends UntypedActor {

ActorRef personalLoanAccountant=getContext().actorOf(new Props(PersonalLoanAccountant.class).withRouter(new RoundRobinRouter(2)));
ActorRef homeLoanAccountant=getContext().actorOf(new Props(HomeLoanAccountant.class).withRouter(new RoundRobinRouter(2)));

public void onReceive(Object message) {
if
(message instanceof PersonalLoanRequest) {
personalLoanAccountant.forward(message, getContext());
} else if (message instanceof HomeLoanRequest) {
homeLoanAccountant.forward(message, getContext());
} else {
unhandled(message);
}
}

}

The above class serves as an actor in the system and is purely used to route the incoming messages to PersonalLoanAccountant or HomeLoanAccountant, based on the type of message received. It defines actor references ‘personalLoanAccountant' and ‘homeLoanAccountant' to ‘PersonalLoanAccountant.class' and ‘HomeLoanAccountant.class', respectively. Each of these references initiates two instances of the actor it refers to and attaches a round-robin router to cycle through the actor instances. The ‘onReceive' method checks the type of the message received and forwards the message to either ‘PersonalLoanAccountant' or ‘HomeLoanAccountant' based on the message type. The ‘forward()' method helps ensure that the reference of the original sender is maintained in the message, so the receiver of the message (‘PersonalLoanAccountant' or ‘HomeLoanAccountant') can directly reply back to the message's original sender.

Now, create a static nested class ‘FrontDesk' under ‘Bank':

public static class FrontDesk extends UntypedActor {
int
approvedPersonalLoans=0;
int
approvedHomeLoans=0;
int
rejectedPersonalLoans=0;
int
rejectedHomeLoans=0;

ActorRef backOffice=getContext().actorOf(
new Props(BackOffice.class), "backOffice");

public
void maintainLoanApprovalStats(Object message) {
LoanReply reply = LoanReply.class.cast(message);
if
(reply.isApproved()) {
System.out.println(reply.getType()+" Loan Approved"+" at "+reply.getRate()+"% interest.");
if
(reply.getType().equals("Personal"))
++approvedPersonalLoans;
else
if(reply.getType().equals("Home"))
++approvedHomeLoans;
} else {
System.out.println(reply.getType()+" Loan Rejected");
if
(reply.getType().equals("Personal"))
++rejectedPersonalLoans;
else
if(reply.getType().equals("Home"))
++rejectedHomeLoans;
}
}

public void printLoanApprovalStats() {
System.out.println("--- REPORT ---");
System.out.println("Personal Loans Approved : "+approvedPersonalLoans);
System.out.println("Home Loans Approved : "+approvedHomeLoans);
System.out.println("Personal Loans Rejected : "+rejectedPersonalLoans);
System.out.println("Home Loans Rejected : "+rejectedHomeLoans);
}
public
void onReceive(Object message) {
if
(message instanceof LoanRequest) {
backOffice.tell(message, getSelf());
} else if (message instanceof LoanReply) {
maintainLoanApprovalStats(message);
} else if(message instanceof String && message.equals("printLoanApprovalStats")) {
printLoanApprovalStats();
getContext().stop(getSelf());
} else {
unhandled(message);
}
}
}

The above class serves as the final actor in the system. It creates a reference ‘backOffice' to the actor ‘BackOffice.class'. If the message received is of type ‘LoanRequest', it sends the message to ‘BackOffice' via the method ‘backOffice.tell()', which takes a message and the reference to the sender (acquired through the method ‘getSelf()') as arguments. If the message received is of type ‘LoanReply', it updates the counters to maintain the approved/rejected counts. If the message received is "printLoanApprovalStats", it prints the stats stored in the counters, and then proceeds to stop itself via the method ‘getContext().stop(getSelf())'. The actors follow a pattern of supervisor hierarchy, and thus this command trickles down the hierarchy chain and stops all four actors in the system.

Finally, write a few methods under ‘Bank' to submit requests to the ‘FrontOffice':

public static void main(String[] args) throws InterruptedException {
ActorSystem system = ActorSystem.create("bankSystem");
ActorRef frontDesk = system.actorOf(new Props(FrontDesk.class), "frontDesk");
submitLoanRequests
(frontDesk);
Thread.sleep(1000);
printLoanApprovalStats
(frontDesk);
system.shutdown();
}

public
static PersonalLoanRequest getPersonalLoanRequest() {
int
min=10000; int max=50000;
int
amount=min + (int)(Math.random() * ((max - min) + 1));
int
balance=min + (int)(Math.random() * ((max - min) + 1));
return
(new Bank()).new PersonalLoanRequest(amount, balance);
}

public
static HomeLoanRequest getHomeLoanRequest() {
int
min=50000; int max=90000;
int
amount=min + (int)(Math.random() * ((max - min) + 1));
int
balance=min + (int)(Math.random() * ((max - min) + 1));
return
(new Bank()).new HomeLoanRequest(amount, balance);
}

public static void submitLoanRequests(ActorRef frontDesk) {
for
(int i=0;i<1000;i++) {
frontDesk.tell(getPersonalLoanRequest());
frontDesk.tell(getHomeLoanRequest());
}
}

public static void printLoanApprovalStats(ActorRef frontDesk) {
frontDesk.tell("printLoanApprovalStats");
}

The method ‘main' creates an actor system ‘system' using the method ‘ActorSystem.create()'. It then creates a reference ‘frontDesk' to the actor ‘FrontDesk.class'. It uses this reference to send a 1000 requests each of types ‘PersonalLoanRequest' and ‘HomeLoanRequest' to ‘FrontDesk'. It then sleeps for a second, following which it sends the message "printLoanApprovalStats" to ‘FrontDesk'. Once done, it shuts down the actor system via the method ‘system.shutdown()'.

Conclusion
Running the above code will create a loan request processing system with concurrent processing capabilities, and all this without using a single synchronize/lock pattern. Moreover, the code doesn't need one to go into the low-level semantics of the JVM threading mechanism or use the complex ‘java.util.concurrent' package. This mechanism of concurrent processing using the Actor Model is truly more robust as multiple concurrent processes can communicate with each other without needing to use shared state variables.

More Stories By Sanat Vij

Sanat Vij is a professional software engineer currently working at CenturyLink. He has vast experience in developing high availability applications, configuring application servers, JVM profiling and memory management. He specializes in performance tuning of applications, reducing response times, and increasing stability.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
Increasing IoT connectivity is forcing enterprises to find elegant solutions to organize and visualize all incoming data from these connected devices with re-configurable dashboard widgets to effectively allow rapid decision-making for everything from immediate actions in tactical situations to strategic analysis and reporting. In his session at 18th Cloud Expo, Shikhir Singh, Senior Developer Relations Manager at Sencha, will discuss how to create HTML5 dashboards that interact with IoT devic...
The IoTs will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, will demonstrate how to move beyond today's coding paradigm and share the must-have mindsets for removing complexity from the development proc...
We’ve worked with dozens of early adopters across numerous industries and will debunk common misperceptions, which starts with understanding that many of the connected products we’ll use over the next 5 years are already products, they’re just not yet connected. With an IoT product, time-in-market provides much more essential feedback than ever before. Innovation comes from what you do with the data that the connected product provides in order to enhance the customer experience and optimize busi...
A critical component of any IoT project is the back-end systems that capture data from remote IoT devices and structure it in a way to answer useful questions. Traditional data warehouse and analytical systems are mature technologies that can be used to handle large data sets, but they are not well suited to many IoT-scale products and the need for real-time insights. At Fuze, we have developed a backend platform as part of our mobility-oriented cloud service that uses Big Data-based approache...
trust and privacy in their ecosystem. Assurance and protection of device identity, secure data encryption and authentication are the key security challenges organizations are trying to address when integrating IoT devices. This holds true for IoT applications in a wide range of industries, for example, healthcare, consumer devices, and manufacturing. In his session at @ThingsExpo, Lancen LaChance, vice president of product management, IoT solutions at GlobalSign, will teach IoT developers how t...
Digital payments using wearable devices such as smart watches, fitness trackers, and payment wristbands are an increasing area of focus for industry participants, and consumer acceptance from early trials and deployments has encouraged some of the biggest names in technology and banking to continue their push to drive growth in this nascent market. Wearable payment systems may utilize near field communication (NFC), radio frequency identification (RFID), or quick response (QR) codes and barcodes...
SYS-CON Events announced today that Peak 10, Inc., a national IT infrastructure and cloud services provider, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Peak 10 provides reliable, tailored data center and network services, cloud and managed services. Its solutions are designed to scale and adapt to customers’ changing business needs, enabling them to lower costs, improve performance and focus inter...
We're entering the post-smartphone era, where wearable gadgets from watches and fitness bands to glasses and health aids will power the next technological revolution. With mass adoption of wearable devices comes a new data ecosystem that must be protected. Wearables open new pathways that facilitate the tracking, sharing and storing of consumers’ personal health, location and daily activity data. Consumers have some idea of the data these devices capture, but most don’t realize how revealing and...
The demand for organizations to expand their infrastructure to multiple IT environments like the cloud, on-premise, mobile, bring your own device (BYOD) and the Internet of Things (IoT) continues to grow. As this hybrid infrastructure increases, the challenge to monitor the security of these systems increases in volume and complexity. In his session at 18th Cloud Expo, Stephen Coty, Chief Security Evangelist at Alert Logic, will show how properly configured and managed security architecture can...
There is an ever-growing explosion of new devices that are connected to the Internet using “cloud” solutions. This rapid growth is creating a massive new demand for efficient access to data. And it’s not just about connecting to that data anymore. This new demand is bringing new issues and challenges and it is important for companies to scale for the coming growth. And with that scaling comes the need for greater security, gathering and data analysis, storage, connectivity and, of course, the...
The IETF draft standard for M2M certificates is a security solution specifically designed for the demanding needs of IoT/M2M applications. In his session at @ThingsExpo, Brian Romansky, VP of Strategic Technology at TrustPoint Innovation, will explain how M2M certificates can efficiently enable confidentiality, integrity, and authenticity on highly constrained devices.
So, you bought into the current machine learning craze and went on to collect millions/billions of records from this promising new data source. Now, what do you do with them? Too often, the abundance of data quickly turns into an abundance of problems. How do you extract that "magic essence" from your data without falling into the common pitfalls? In her session at @ThingsExpo, Natalia Ponomareva, Software Engineer at Google, will provide tips on how to be successful in large scale machine lear...
Artificial Intelligence has the potential to massively disrupt IoT. In his session at 18th Cloud Expo, AJ Abdallat, CEO of Beyond AI, will discuss what the five main drivers are in Artificial Intelligence that could shape the future of the Internet of Things. AJ Abdallat is CEO of Beyond AI. He has over 20 years of management experience in the fields of artificial intelligence, sensors, instruments, devices and software for telecommunications, life sciences, environmental monitoring, process...
You think you know what’s in your data. But do you? Most organizations are now aware of the business intelligence represented by their data. Data science stands to take this to a level you never thought of – literally. The techniques of data science, when used with the capabilities of Big Data technologies, can make connections you had not yet imagined, helping you discover new insights and ask new questions of your data. In his session at @ThingsExpo, Sarbjit Sarkaria, data science team lead ...
SYS-CON Events announced today that Ericsson has been named “Gold Sponsor” of SYS-CON's @ThingsExpo, which will take place on June 7-9, 2016, at the Javits Center in New York, New York. Ericsson is a world leader in the rapidly changing environment of communications technology – providing equipment, software and services to enable transformation through mobility. Some 40 percent of global mobile traffic runs through networks we have supplied. More than 1 billion subscribers around the world re...
In his session at @ThingsExpo, Chris Klein, CEO and Co-founder of Rachio, will discuss next generation communities that are using IoT to create more sustainable, intelligent communities. One example is Sterling Ranch, a 10,000 home development that – with the help of Siemens – will integrate IoT technology into the community to provide residents with energy and water savings as well as intelligent security. Everything from stop lights to sprinkler systems to building infrastructures will run ef...
Manufacturers are embracing the Industrial Internet the same way consumers are leveraging Fitbits – to improve overall health and wellness. Both can provide consistent measurement, visibility, and suggest performance improvements customized to help reach goals. Fitbit users can view real-time data and make adjustments to increase their activity. In his session at @ThingsExpo, Mark Bernardo Professional Services Leader, Americas, at GE Digital, will discuss how leveraging the Industrial Interne...
The increasing popularity of the Internet of Things necessitates that our physical and cognitive relationship with wearable technology will change rapidly in the near future. This advent means logging has become a thing of the past. Before, it was on us to track our own data, but now that data is automatically available. What does this mean for mHealth and the "connected" body? In her session at @ThingsExpo, Lisa Calkins, CEO and co-founder of Amadeus Consulting, will discuss the impact of wea...
Whether your IoT service is connecting cars, homes, appliances, wearable, cameras or other devices, one question hangs in the balance – how do you actually make money from this service? The ability to turn your IoT service into profit requires the ability to create a monetization strategy that is flexible, scalable and working for you in real-time. It must be a transparent, smoothly implemented strategy that all stakeholders – from customers to the board – will be able to understand and comprehe...
You deployed your app with the Bluemix PaaS and it's gaining some serious traction, so it's time to make some tweaks. Did you design your application in a way that it can scale in the cloud? Were you even thinking about the cloud when you built the app? If not, chances are your app is going to break. Check out this webcast to learn various techniques for designing applications that will scale successfully in Bluemix, for the confidence you need to take your apps to the next level and beyond.