Welcome!

Java Authors: Pat Romanski, Elizabeth White, Liz McMillan, Jason Bloomberg, Trevor Parsons

Related Topics: Cloud Expo, Java, SOA & WOA, Virtualization, GovIT

Cloud Expo: Blog Feed Post

MaaS – The Solution to Design, Map, Integrate and Publish Open Data

Data models can be shared, off-line tested and verified to define data designing requirements, data topology, performance, place

Open Data is data that can be freely used, reused and redistributed by anyone – subject only, at the most, to the requirement for attributes and sharealikes (Open Software Service Definition – OSSD). As a consequence, Open Data should create value and might have a positive impact in many different areas such as government (tax money expenditure), health (medical research, hospital acceptance by pathology), quality of life (air breathed in our city, pollution) or might influence public decisions like investments, public economy and expenditure. We are talking about services, so open data are services needed to connect the community with the public bodies. However, the required open data should be part of a design and then integrated, mapped, updated and published in a form, which is easy to use. MaaS is the Open Data driver and enables Open Data portability into the Cloud.

Introduction
Data models used as a service mainly provide the following topics:

  • Implementing and sharing data structure models;
  • Verifying data model properties according to private and public cloud requirements;
  • Designing and testing new query types. Specific query classes need to support heterogeneous data;
  • Designing of the data storage model. The model should enable query processing directly against databases to ensure privacy and secure changes from data updates and review;
  • Modeling data to predict usage “early”;
  • Portability, a central property when data is shared among fields of application;
  • Sharing, redistribution and participation of data among datasets and applications.

As a consequence, the data should be available as a whole and at a reasonable fee, preferably by finding, navigating and downloading over the Cloud. It should also be available in a usable and changeable form. This means modeling Open Data and then using the models to map location and usage, configuration, integration and changes along the Open Data lifecycle.

What is MaaS
Data models can be shared, off-line tested and verified to define data designing requirements, data topology, performance, placement and deployment. This means models themselves can be supplied as a service to allow providers to verify how and where data has to be designed to meet the Cloud service’s requisites: this is MaaS. As a consequence by using MaaS, Open Data designers can verify “on-premise” how and why datasets meet Open Data requirements. With this approach, Open Data models can be tuned on real usage and then mapped “on-premise” to the public body’s service. Further, MaaS inherits all the defined service’s properties and so the data model can be reused, shared and classified for new Open Data design and publication.

Open Data implementation is MaaS (Model as a Service) driven
Open Data is completely supported by data modeling and then MaaS completely supports Open Data. MaaS should be the first practice, helping to tune analysis and Open Data design. Furthermore, data models govern design, deployment, storage, changes, resources allocation, hence MaaS supports:

  • Applying Best Practice for Open Data design;
  • Classifying Open Data field of application;
  • Designing Open Data taxonomy and integration;
  • Guiding Open Data implementation;
  • Documenting data maturity and evolution by applying DaaS lifecycle.

Accordingly, Maas provides “on-premise” properties supporting Open Data design and publication:

  1. AnalysisWhat data are you planning to make open? When working with MaaS, a data model is used to perform data analysis. This means the Open Data designer might return to this step to correct, update and improve the incoming analysis: he always works on an “on-premise” data model. Analysis performed by model helps in identifying data integration and interoperability. The latter assists in choosing what data has to be published and in defining open datasets;
  2. DesignDuring the analysis step, the design is carried out too. The design can be changed and traced along the Open Data lifecycle. Remember that with MaaS the model is a service, and the data opened offers the designed service;
  3. Data securityData security becomes the key property to rule data access and navigation. MaaS plays a crucial role in data security: in fact, the models contain all the infrastructure properties and include information to classify accesses, classes of users, perimeters and risk mitigation assets. Models are the central way to enable data protection within the Open Data device;
  4. Participation - Because the goal is “everyone must be able to use Open Data”, participation is comprehensive of people and groups without any discrimination or restriction. Models contain data access rules and accreditations (open licensing).
  5. Mapping – The MaaS mapping property is important because many people can obtain the data after long navigation and several “bridges” connecting different fields of applications. Looking at this aspect, MaaS helps the Open Data designer to define the best initial “route” between transformation and aggregation linking different areas. Then continually engaging citizens, developers, sector’s expert, managers … helps in modifying the model to better update and scale Open Data contents: the easier it is for outsiders to discover data, the faster new and useful Open Data services will be built.
  6. OntologyDefining metadata vocabulary for describing ontologies. Starting from standard naming definition, data models provide grouping and reorganizing vocabulary for further metadata re-use, integration, maintenance, mapping and versioning;
  7. Portability – Models contain all the properties belonging to data in order that MaaS can enable Open Data service’s portability to the Cloud. The model is portable by definition and it can be generated to different database and infrastructures;
  8. Availability – The DaaS lifecycle assures structure validation in terms of MaaS accessibility;
  9. Reuse and distribution – Open Data can include merging with additional datasets belonging to other fields of application (for example, medical research vs. air pollution). Open Data built by MaaS has this advantage. Merging open datasets means merging models by comparing and synchronizing, old and new versions, if needed;
  10. Change Management and History – Data models are organized in libraries to preserve Open Data changes and history. Changes are traced and maintained to restore, if necessary, model and/or datasets;
  11. Redesign – Redesigning Open Data, means redesigning the model it belongs to: the  model drives the history of the changes;
  12. Fast BI – Publishing Open Data is an action strictly related to the BI process. Redesigning and publishing Open Data are two automated steps starting from the design of the data model and from its successive updates.

Conclusion
MaaS is the emerging solution for Open Data implementation. Open Data is public and private accessible data, designed to connect the social community with the public bodies. This data should be made available without restriction although it is placed under security and open licensing. In addition, Open Data is always up-to-date and transformation and aggregation have to be simple and time saving for inesperienced users. To achieve these goals, the Open Data service has to be model driven designed and providing data integration, interoperability, mapping, portability, availability, security, distribution, all properties assured by applying MaaS.

References
[1] N. Piscopo - ERwin® in the Cloud: How Data Modeling Supports Database as a Service (DaaS) Implementations
[2] N. Piscopo - CA ERwin® Data Modeler’s Role in the Relational Cloud
[3] N. Piscopo - DaaS Contract templates: main constraints and examples, in press
[4] D. Burbank, S. Hoberman - Data Modeling Made Simple with CA ERwin® Data Modeler r8
[7] N. Piscopo – Best Practices for Moving to the Cloud using Data Models in theDaaS Life Cycle
[8] N. Piscopo – Using CA ERwin® Data Modeler and Microsoft SQL Azure to Move Data to the Cloud within the DaaS Life Cycle
[9] The Open Software Service Definition (OSSD) at opendefinition.org

Read the original blog entry...

More Stories By Cloud Ventures

The Cloud Ventures Network is an expert community of leading Cloud pioneers. Follow our best practice blogs at http://CloudBestPractices.net

@ThingsExpo Stories
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.
SYS-CON Events announced today that Windstream, a leading provider of advanced network and cloud communications, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Windstream (Nasdaq: WIN), a FORTUNE 500 and S&P 500 company, is a leading provider of advanced network communications, including cloud computing and managed services, to businesses nationwide. The company also offers broadband, phone and digital TV services to consumers primarily in rural areas.
"There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo (http://www.CloudComputingExpo.com), moderated by Ashar Baig, Research Director, Cloud, at Gigaom Research, Nate Gordon, Director of T...