Click here to close now.


Java IoT Authors: Liz McMillan, Pat Romanski, AppDynamics Blog, Elizabeth White, Cloud Best Practices Network

Blog Feed Post

How to Proxyfy Apache


There are a variety of ways to implement proxying capabilities for web servers. As Apache is the most popular web server, we will try to implement proxying on it. Everyone who knows Apache well, probably knows that Apache implements proxying capability for AJP13 , FTP, CONNECT , HTTP/1.x.

The choice of reverse proxy server is fully dependent on what is actually trying to be hidden behind it. Each proxy mechanism has its own benefits and bottlenecks. Only for Apache, there are several ways to hide application servers (mod_proxy, mod_passenger, mod_wsgi, mod_jk). While mod_passenger and mod_wsgi are good for ruby and python servers respectively, these are a little bit outside the proxying idea. In this article I would like to discuss mod_proxy and mod_jk.


Now let’s think about what we have and what we want to put under proxy. The most common case is to put a pool of Tomcat servers behind Apache. Tomcat servers by default listen to 8080 for HTTP and 8009 for AJP. Now, we want to have Apache listen to 80 for incoming HTTP requests and 443 for HTTPS. People who have configured Tomcat for SSL will undoubtedly agree with me that SSL on Tomcat is quite annoying, so it’s better to implement SSL on the Apache side rather than playing with Tomcat’s keystores.


Okay, now we have two Tomcat servers on 2 different servers with our application installed, and both are on 8080 and an 8009 HTTP/AJP respectively. And one Apache on a third which will do HTTP on 80 , HTTPS on 443 for us and process requests to downstream Tomcat servers.

Situation 1 with mod_proxy and mod_proxy_http:


OK, here’s what this means:


User opens in their browser

  1. Request comes to Apache
  2. Apache proxies it via HTTP to downstream Tomcat to port 8080
  3. Tomcat sends response to Apache via HTTP
  4. Apache delivers content to User’s browser

Well, so what are the pros and cons of this situation? We will provide some comparison tables below, but in general:


  1. Easy and quick to configure
  2. Works for all downstream application servers


  1. We do not have sticky sessions: if a user logs in to Tomcat1 and sends another request it will most likely go to Tomcat2 and the user will get a session expired error.
  2. mod_proxy does not support failover detection, so it will continue to send requests to downstream Tomcat even if it is down.
  3. Some Java applications exhibit unpredictable behavior when they are under a proxy environment. (From my experience, Atlassian Bamboo and Fisheye server’s progress bars stalled on several pages, but this was corrected by moving to JK; I have heard about other strange problems as well. )

Now let’s see Situation 2, where we use JK for downstream servers:


At first sight we can see that nothing has been changed, but this is only at first sight. The main difference here is that now Apache is talking to the Tomcats via AJP 13 and not HTTP protocol. So the process of opening the web site is the following:

  1. User opens in their browser
  2. Request comes to Apache
  3. Apache proxies it via AJP 13 to downstream Tomcat to the port 8009
  4. Tomcat sends response to Apache via AJP
  5. Apache receives AJP and delivers content to Users browser via HTTP

It seems there is a little overhead with jumping around on HTTP and AJP, but there are benefits as well. Let’s see the Good and Bad sides of JK balancing:


  1. After a little tweaking we can have sticky sessions just by adding sticky_session=True on Apache and jvmRoute=”NODENAME” on the Tomcat sides. After this, users who are logged in to Tomcat1 will never be dropped to Tomcat2 until Tomcat1 is alive. (Actually you can Use Membase or Memcached as session store so users will never lose their session until it expires normally)
  2. We have node failure detection, so if Tomcat1 fails, Apache will not send requests to it until it detects that it is back.
  3. JK configuration is much more advanced than that of mod_proxy and allows lots of tweaking, which will result in better performance and make the environment work just as you need it to.
  4. JK has a web admin tool that allows you to decommission, suspend and play with the LB factor in real time.


  1. So far I have found only one bad thing: it is a little harder to configure, so it required some administrator skills.

At this moment you may be asking “Why do I need this? I have a single Tomcat server and it’s working fine”.  As a matter of fact, you need to build a network which can handle your current load, be scalable and which will not affect the normal behavior of your websites. From this point of view, the choice of reverse proxy solution is quite reasonable.

Here is a real life example of one of our client server architectures, which I think is a good one :)


In general, the process is as follows:

  1. User does DNS request, gets ip address of one of the Varnish servers and the Static content server/s (NGINX).
  2. NGINX delivers content directly.
  3. Varnish caches whatever needs to be cached and sends request downstream to one of the Apaches.
  4. Apache gets JSESSIONID and forwards request via JK to the required Tomcat server or does balance if user does not have cookie.
  5. Tomcat servers keep sessions in local RAM and copy in Membase cluster (so even if one Tomcat fails another can retrieve its session from Membase ). Membase is clustered memcache so it is fault tolerant by nature (we will have a closer look at Membase in another article).
  6. Tomcat does needed application logic, (retrieves information from Hadoop/HBase database, etc.) and responds to Apache.
  7. Apache sends response back to Varnish.
  8. Varnish updates cache if needed and does delivery to client.

This is a real live working scenario, and it proved itself to be fault tolerant and extremely fast.

I know that after reading this article a lot of people will ask, “why is Apache needed when Varnish can do session stickiness, etc. …”

But the idea here is to use the best possible software for each particular role, software which has real and approved redundancy and reasonable layers of architecture which can help us to easily and quickly detect problems and fix them as they appear. Also, if we keep in mind that the client uses not only HTTP, but also HTTPS, I did not see any webserver which worked with SSL as smoothly as Apache did. Even if we do not have SSL initially, we will have it soon, and I do not believe that any web project can go far without SSL.

Following is a little comparison of JK and mod_proxy, so you can see more closely what these tools are.


Features mod_proxy Weight mod_jk Weight
Load balancing Basic 5 Advanced 10
Node failure detection mod_proxy_balancer has to be present in the server 7 Advanced 10
Backend SSL supported (mod_ssl required) 5 not supported 0
Session stickiness not supported 0 Supported via JVM Route 10
Protocols HTTP, HTTPS 10 AJP 13 8
Node decommissioning Manual needs Apache reload 3 Online via web admin 10
Web admin interface Not present 0 Advanced with RO and RW support 10
Large AJP packet sizes 8K 5 Larger than 8K 10
Compatibility with other app. servers Works with all HTTP application servers 10 AJP Compatible (Tomcat, Glassfish, etc. …) 5
Configuration Compatible with Apache Httpd configuration file 10 Need separate JK Workers file in .properties format 8
Summary 55 81


So now let’s do some stress tests on both mod_jk and mod_proxy. The Installation schema is as described above (one load balancer, two application servers.) On both Apache server hosts, monitoring software from is installed which will check the servers’ health in real time.

We have used Amazon EC2 medium instances for this test. Here are the load test results in both graphical and plain text mode.

Monitoring is implemented using Monitis M3 monitors.

There are 2 monitors used:

apache_monitor – used for apache server’s health check.

http_load monitor - used to check the load time difference during Apache benchmarking.


The mentioned monitors provide useful information which helps to find relationships between various metrics.


The graphic below depicts Apache worker’s status while busy (upper line) and idle (lower line) while benchmarking using

mod_proxy balancer.

This graph shows Apache busy and idle worker processes on the Apache web server, so we can see that of 150 enabled processes, almost all are busy during the stress test.


Http content load time (time connect, time transfer, time total)

Following is data provided by siege after benchmarking 7 times (using mod_proxy), each time increasing the concurrent users’ number by 100:


Concurrent conns. Trans Elap Time Data Trans Resp Time Trans Rate Throughput Concurrent Failed
100 112173 359.18 206 0.32 312.30 0.57 99.93 0
200 181578 360.01 333 0.40 504.37 0.92 199.72 3
300 179025 360.00 329 0.60 497.29 0.91 299.37 5
400 177681 360.00 326 0.81 493.56 0.91 397.44 40
500 166401 359.99 305 1.07 462.24 0.85 494.52 130
600 160853 359.99 295 1.31 446.83 0.82 584.32 444



The graphic below represents Apache worker’s busy (upper line) and idle (lower line) status while benchmarking using


This graph shows Apache busy and idle worker processes on the Apache webserver, so we can see that of 150 enabled processes, almost all are busy during the stress test.

Http content load time (time connect, time transfer, time total)

Following is data provided by siege after benchmarking 7 times (using mod_jk), each time increasing the concurrent users number by 100:


Concurrent conns. Trans Elap time Data Trans Resp Time Trans time Throughput Concurrent Failed
100 106919 359.60 198 0.34 297.33 0.55 99.93 0
200 186123 360.01 345 0.39 516.99 0.96 199.76 0
300 183017 360.00 339 0.59 508.38 0.94 299.29 8
400 179891 360.00 333 0.80 499.70 0.93 397.34 49
500 169284 359.99 313 1.05 470.25 0.87 494.55 124
600 182954 359.99 339 1.16 508.22 0.94 590.32 258




Both mentioned modules, mod_proxy and mod_jk, are used as balancers for backend application servers such as Tomcat and GlassFish. What are the most important features in load balancing? I assumed node failure detection at first, and ease of session stability and load balancing configuration, without requiring any other extra tools or packages. Do not forget about performance, as well.

So what do we have? The resulting tables show that when advanced load balancing or node failure detection is needed, mod_jk is preferable. However, it cannot provide flexibility such as mod_proxy does when configuring (mod_proxy configuration is as easy as Apache configuration and there is no need for separate files like nor for compatibility needs with servers, other than AJP compatibility.

Now a little bit about performance. While the concurrent users count is not so high (in our case: 400), both servers’ behavior is similar, and it seems mod_proxy is able to provide better performance, but things changed as the number of concurrent users grew.

Take a look at this table:


Concurrent users Failed requests(10 Seconds Timeout)
mod_jk 590.32 258
mod_proxy 584.32 444

As you see, with an almost equal number of connections, mod_proxy fails approximately 59% more often.

If you have a small project, or need to hide a variety of application servers (Tomcat+Rails+Django), and if you need an easily configurable and fast SSL solution and your server load is not heavy, then use mod_proxy.

But if your goal is to loadbalance Java applications servers, then JK is definitely the better solution.

Share Now:del.icio.usDiggFacebookLinkedInBlinkListDZoneGoogle BookmarksRedditStumbleUponTwitterRSS

Read the original blog entry...

More Stories By Hovhannes Avoyan

Hovhannes Avoyan is the CEO of Monitis, Inc., a provider of on-demand systems management and monitoring software to 50,000 users spanning small businesses and Fortune 500 companies.

Prior to Monitis, he served as General Manager and Director of Development at prominent web portal Lycos Europe, where he grew the Lycos Armenia group from 30 people to over 200, making it the company's largest development center. Prior to Lycos, Avoyan was VP of Technology at Brience, Inc. (based in San Francisco and acquired by Syniverse), which delivered mobile internet content solutions to companies like Cisco, Ingram Micro, Washington Mutual, Wyndham Hotels , T-Mobile , and CNN. Prior to that, he served as the founder and CEO of CEDIT ltd., which was acquired by Brience. A 24 year veteran of the software industry, he also runs Sourcio cjsc, an IT consulting company and startup incubator specializing in web 2.0 products and open-source technologies.

Hovhannes is a senior lecturer at the American Univeristy of Armenia and has been a visiting lecturer at San Francisco State University. He is a graduate of Bertelsmann University.

@ThingsExpo Stories
The IoT market is on track to hit $7.1 trillion in 2020. The reality is that only a handful of companies are ready for this massive demand. There are a lot of barriers, paint points, traps, and hidden roadblocks. How can we deal with these issues and challenges? The paradigm has changed. Old-style ad-hoc trial-and-error ways will certainly lead you to the dead end. What is mandatory is an overarching and adaptive approach to effectively handle the rapid changes and exponential growth.
Today’s connected world is moving from devices towards things, what this means is that by using increasingly low cost sensors embedded in devices we can create many new use cases. These span across use cases in cities, vehicles, home, offices, factories, retail environments, worksites, health, logistics, and health. These use cases rely on ubiquitous connectivity and generate massive amounts of data at scale. These technologies enable new business opportunities, ways to optimize and automate, along with new ways to engage with users.
The buzz continues for cloud, data analytics and the Internet of Things (IoT) and their collective impact across all industries. But a new conversation is emerging - how do companies use industry disruption and technology enablers to lead in markets undergoing change, uncertainty and ambiguity? Organizations of all sizes need to evolve and transform, often under massive pressure, as industry lines blur and merge and traditional business models are assaulted and turned upside down. In this new data-driven world, marketplaces reign supreme while interoperability, APIs and applications deliver un...
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data shows "less than 10 percent of IoT developers are making enough to support a reasonably sized team....
You have your devices and your data, but what about the rest of your Internet of Things story? Two popular classes of technologies that nicely handle the Big Data analytics for Internet of Things are Apache Hadoop and NoSQL. Hadoop is designed for parallelizing analytical work across many servers and is ideal for the massive data volumes you create with IoT devices. NoSQL databases such as Apache HBase are ideal for storing and retrieving IoT data as “time series data.”
Clearly the way forward is to move to cloud be it bare metal, VMs or containers. One aspect of the current public clouds that is slowing this cloud migration is cloud lock-in. Every cloud vendor is trying to make it very difficult to move out once a customer has chosen their cloud. In his session at 17th Cloud Expo, Naveen Nimmu, CEO of Clouber, Inc., will advocate that making the inter-cloud migration as simple as changing airlines would help the entire industry to quickly adopt the cloud without worrying about any lock-in fears. In fact by having standard APIs for IaaS would help PaaS expl...
There are so many tools and techniques for data analytics that even for a data scientist the choices, possible systems, and even the types of data can be daunting. In his session at @ThingsExpo, Chris Harrold, Global CTO for Big Data Solutions for EMC Corporation, will show how to perform a simple, but meaningful analysis of social sentiment data using freely available tools that take only minutes to download and install. Participants will get the download information, scripts, and complete end-to-end walkthrough of the analysis from start to finish. Participants will also be given the pract...
SYS-CON Events announced today that ProfitBricks, the provider of painless cloud infrastructure, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. ProfitBricks is the IaaS provider that offers a painless cloud experience for all IT users, with no learning curve. ProfitBricks boasts flexible cloud servers and networking, an integrated Data Center Designer tool for visual control over the cloud and the best price/performance value available. ProfitBricks was named one of the coolest Clo...
Organizations already struggle with the simple collection of data resulting from the proliferation of IoT, lacking the right infrastructure to manage it. They can't only rely on the cloud to collect and utilize this data because many applications still require dedicated infrastructure for security, redundancy, performance, etc. In his session at 17th Cloud Expo, Emil Sayegh, CEO of Codero Hosting, will discuss how in order to resolve the inherent issues, companies need to combine dedicated and cloud solutions through hybrid hosting – a sustainable solution for the data required to manage I...
NHK, Japan Broadcasting, will feature the upcoming @ThingsExpo Silicon Valley in a special 'Internet of Things' and smart technology documentary that will be filmed on the expo floor between November 3 to 5, 2015, in Santa Clara. NHK is the sole public TV network in Japan equivalent to the BBC in the UK and the largest in Asia with many award-winning science and technology programs. Japanese TV is producing a documentary about IoT and Smart technology and will be covering @ThingsExpo Silicon Valley. The program, to be aired during the peak viewership season of the year, will have a major impac...
Apps and devices shouldn't stop working when there's limited or no network connectivity. Learn how to bring data stored in a cloud database to the edge of the network (and back again) whenever an Internet connection is available. In his session at 17th Cloud Expo, Bradley Holt, Developer Advocate at IBM Cloud Data Services, will demonstrate techniques for replicating cloud databases with devices in order to build offline-first mobile or Internet of Things (IoT) apps that can provide a better, faster user experience, both offline and online. The focus of this talk will be on IBM Cloudant, Apa...
WebRTC is about the data channel as much as about video and audio conferencing. However, basically all commercial WebRTC applications have been built with a focus on audio and video. The handling of “data” has been limited to text chat and file download – all other data sharing seems to end with screensharing. What is holding back a more intensive use of peer-to-peer data? In her session at @ThingsExpo, Dr Silvia Pfeiffer, WebRTC Applications Team Lead at National ICT Australia, will look at different existing uses of peer-to-peer data sharing and how it can become useful in a live session to...
As a company adopts a DevOps approach to software development, what are key things that both the Dev and Ops side of the business must keep in mind to ensure effective continuous delivery? In his session at DevOps Summit, Mark Hydar, Head of DevOps, Ericsson TV Platforms, will share best practices and provide helpful tips for Ops teams to adopt an open line of communication with the development side of the house to ensure success between the two sides.
SYS-CON Events announced today that IBM Cloud Data Services has been named “Bronze Sponsor” of SYS-CON's 17th Cloud Expo, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. IBM Cloud Data Services offers a portfolio of integrated, best-of-breed cloud data services for developers focused on mobile computing and analytics use cases.
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
WebRTC has had a real tough three or four years, and so have those working with it. Only a few short years ago, the development world were excited about WebRTC and proclaiming how awesome it was. You might have played with the technology a couple of years ago, only to find the extra infrastructure requirements were painful to implement and poorly documented. This probably left a bitter taste in your mouth, especially when things went wrong.
Nowadays, a large number of sensors and devices are connected to the network. Leading-edge IoT technologies integrate various types of sensor data to create a new value for several business decision scenarios. The transparent cloud is a model of a new IoT emergence service platform. Many service providers store and access various types of sensor data in order to create and find out new business values by integrating such data.
The broad selection of hardware, the rapid evolution of operating systems and the time-to-market for mobile apps has been so rapid that new challenges for developers and engineers arise every day. Security, testing, hosting, and other metrics have to be considered through the process. In his session at Big Data Expo, Walter Maguire, Chief Field Technologist, HP Big Data Group, at Hewlett-Packard, will discuss the challenges faced by developers and a composite Big Data applications builder, focusing on how to help solve the problems that developers are continuously battling.
WebRTC converts the entire network into a ubiquitous communications cloud thereby connecting anytime, anywhere through any point. In his session at WebRTC Summit,, Mark Castleman, EIR at Bell Labs and Head of Future X Labs, will discuss how the transformational nature of communications is achieved through the democratizing force of WebRTC. WebRTC is doing for voice what HTML did for web content.
Developing software for the Internet of Things (IoT) comes with its own set of challenges. Security, privacy, and unified standards are a few key issues. In addition, each IoT product is comprised of at least three separate application components: the software embedded in the device, the backend big-data service, and the mobile application for the end user's controls. Each component is developed by a different team, using different technologies and practices, and deployed to a different stack/target - this makes the integration of these separate pipelines and the coordination of software upd...