Welcome!

Java IoT Authors: Elizabeth White, Pat Romanski, Sematext Blog, Liz McMillan, Greg Schulz

Related Topics: Microservices Expo, Java IoT, Industrial IoT, Microsoft Cloud, IoT User Interface, Apache

Microservices Expo: Article

Intelligent Complex Event Processing with Artificial Neural Network

Solve highly complex problems in real or near real time

In the current world, data is continuously being generated across various layers of organizations and environment due to changes in the system states or due to the occurrence of new events. These changes in the state of the existing system can happen due to the arrival of a new order request, customer service calls for complaints or feedback, changes in the company stock prices, text or multimedia messages, emails, social media posts, traffic reports, weather reports or any other kind of data. Simply producing reports using these data on a pre-defined schedule is not enough. Decision makers need real-time alerts and intelligent insight of all that is happening within and around the organization so that they may take meaningful reactive and proactive action before it is too late based on the new information being continuously generated.

A powerful technique called Complex Event Processing (CEP) is used for analyzing events coming from multiple sources over a specific period of time by detecting complex patterns between events and by making correlations. Apart from CEP, Artificial Neural Network (ANN) is also used to model complex relationships between input events data. Both the approaches have their own pros and cons. In this article, we tried to describe a use case in the health care domain with the solution architecture using both CEP and ANN, combining the best capabilities of both the approaches. We have shown how one can use both the techniques together to solve highly complex problems in real or near real time.

The following two sections gives brief introduction about CEP and ANN respectively with their key benefits. In section 4, we have explained the approach which combines both the CEP and the ANN efficiently to provide better solution of complex problems. Section 5 and 6 explains the Health Care: Patient Monitoring System use case with the problem description and proposed solution approach using CEP and ANN, followed by the section with summary and conclusion.

Complex Event Processing
Complex event processing is one of the key Operational Intelligence technology used to process one or more stream of data and information (also known as events) and deriving a meaningful conclusion using them. It allows one to set the request for an analysis or some query and then have it continuously executed and evaluated over time against one or many streams of events in a highly efficient manner. CEP is all about processing events that combines data from many sources to infer events or patterns that suggest more complicated circumstances [1].  For example, CEP can be used as Fraud Detection system, to detect suspicious credit card usage by monitoring credit card activity in real time and relating the current transactions with the historical data about a particular customer. The historical data which can be used by CEP Fraud Detection system can be an average transaction amount, minimum and maximum values of the previous transactions, transaction frequencies, locality etc. On detecting fraudulent activity, CEP system can send an alert via an SMS or email to the customer or the credit card service provider to take quick reaction.

The primary goal of CEP is to (1) detect meaningful events or pattern of events which signifies either threats or opportunities from the series of events being received continuously and (2) send alerts for the same to responsible entity to respond as quickly as possible. The following diagram (as figure-1) describes high level view of the CEP system.

Figure 1: High-level view of the CEP system

As shown in Figure 1, the core of the complex event processing system is made up of set of input adapters, set of output adapters and various event processing modules such as event filtering modules, in-memory caching, aggregation over different windows (time-window, sliding window, tumbling window etc.), database lookups module, database writes module, correlation, joins, event pattern matching, state machines, dynamic queries etc. More the number of I/O adapters supported by the CEP, more flexible and adaptable it is and will be able to cover wide range of use cases as compared to the CEP tool having support for limited set of I/O adapters.

Key Benefits of CEP
The following are some of the key benefits the CEP provides to the business.

  • Automatically identifies rare but important relationships between seemingly unrelated events or stream of events and accelerate timely responses to both the threats and opportunities.
  • Using sophisticated analysis and event pattern matching techniques, the CEP improves resource allocation and timely problem resolution by prioritize situations that require the most urgent attention in real or near real time based on arrival of events.
  • CEP helps organization to reduce operating costs by monitoring end-to-end performance of the system and provide timely alerts to rapidly identify potential SLA violations.
  • CEP helps organization to fine tune their business processes by correlating SLA performance with industry metrics e.g. Six Sigma and various Quality metrics, to enhance overall productivity.

Artificial Neural Network
An Artificial Neural Network (ANN) is a computational model which resembles with the way human brain is made up of in structure and the way it works. Similar to human brain which is made up of billions of neurons interconnected by synapses, the ANN can be form as a network of computational nodes connected with each other through links. The ANN needs to be trained repeatedly with specific set of training data before it can be used in production environment. Due to its adaptive nature, the internal structure of the ANN can easily be changed based on external or internal information that flows through the network during the learning phase [2]. The links are assigned weights during training process, which regulate the flow of data from one node to another. ANNs are used to model complex relationships between inputs and outputs data. ANN can efficiently find various patterns in input data or to predict future values of the system parameters. Due to its flexible construct, ANN can be very helpful in modeling complex systems which are very difficult otherwise by using traditional modeling techniques. Artificial neural networks are being applied in diverse of domains and fields. They are extensively used for doing image processing and recognition, speech recognition, credit card fraud detection, for prediction of protein structure in biotechnology and in the field of genetic science.

Artificial neural network consists of two types of interfaces with the external world, the input and the output. Since the ANN is made up of nodes or neurons and the links between them, a subset of total nodes in the ANN act as input nodes, which take data from the external world, a subset of nodes act as output node, which produces result and zero or more hidden nodes act as intermediary nodes, with having only connections with input or output nodes or other hidden nodes.  Hence, the ANN is made up of nodes in input layer, nodes in output layer and zero or more internal layers.

Figure 2: High-level view of artificial neural network

The high level view of ANN is shown in figure-2. The diagram shows a typical neural network with total 12 nodes, three nodes in the input layer, seven nodes in the hidden layer and two nodes in the output layer. Before the neural network can be used in actual production environment, it is needed to be trained for particular environment. The process of training of ANN is called learning of neural network, which is generally done in one of the following three ways:  (a) supervised learning; (b) unsupervised learning and (c) reinforcement learning. The more details about the ANN learning can be found in [2].

Key Benefits of ANN
Since ANNs can infer a function from inputs, they particularly are used in the applications where the complexity of the input data or system modeling makes the design of such a function impractical using traditional approaches. Following are some of the key benefits ANN provides.

  • It is very easy to apply ANN to problem domains where the relationships are quite dynamic or non-linear among the input and output.
  • Since ANN is capable of capturing many kind of relationships and complex patterns among data, ANN allows user to easily model the system which otherwise is very difficult or impossible to represent through traditional modeling approaches.
  • The training information is not stored in any single element but is distributed in the entire network structure. This makes ANN fault tolerant and it reduces the impact of erroneous input on the result.

CEP and ANN Together
Having seen the key properties and benefits of using both, CEP and ANN, this section describes what if one apply both together for specific set of problems to make the modeling of the system and solution easy and efficient. The CEP is best in accepting data or events from multiple channels and apply various event processing operations on it, such as event filtering, event pattern matching, aggregation etc. Apart from that user can configure alerts based on various thresholds on various system parameters. But the CEP tools lakes the ability to predict future events or determine the values of the system parameters for future events, which can be efficiently done by the ANN. So if we combine best of CEP and best of ANN for a particular problem, the resulting solution could be very effective and efficient. In the following sections, we have described how the CEP and the ANN can be used together to solve a particular problem of patient monitoring system in the domain of Health care and medicines.

Patient Monitoring System
The patient monitoring system monitors and keeps track of various body parameters of the patient and provides the data for analysis to monitoring system. Various body parameters could be blood pressure, the percentage of oxygen in the blood, glucose level in the blood, heart beat rate, change in body temperature etc. Data provided by the patient monitoring system helps to make diagnostic decisions easy and more reliable. The quality of patient treatment and care giving can greatly be improved with the use of patient monitoring systems, since it allows generating alerts in case of sudden changes in the patient body parameters which could be dangerous to the patient's health or could be life threatening some time [3].

A Use Case
Goals of the patient monitoring system are to (1) continuously keeps track of the patient's body parameters and store the data for present or future references, (2) identify life-threatening changes in patient's body and raises timely alarms for the same, and (3) to determine whether patient's health is in normal condition or it is improving or worsening based on the continuously arriving input data from various medical monitors. Since no two human bodies react in a same way against given situation or medication, it is very difficult to derived common rule set which can be applied to all human bodies. Similarly, one person's body also reacts differently in different medical and environmental situations. For example, a particular heart beat rate can be normal in some situation, while the same can be very abnormal in the other situation. So to judge the proper health condition, a trained professional is required, i.e. a specialist doctor, who studies all the observations and determine the correct state of patient's health. If the patient monitoring system is equipped with some intelligent agent who will use patient's medical history and current body parameters observations, then quality of patient care delivery can greatly be improved. We combine CEP and ANN together to propose system architecture which tries to act as an intelligent agent of the patient monitoring system, which is described in the following section.

System Architecture of the intelligent patient monitoring system using CEP and ANN
The following diagram, in Figure 3, shows the architecture of the intelligent patient monitoring system using CEP and ANN. There are total five key components; (1) Medical monitors, (2) CEP, (3) Patient's medical history and diagnosis data store, (4) ANN and (5) ANN output to action message converter.

(1) Medical Monitors
Medical monitors are medical devices used for monitoring patient's body parameters. It can consist of one or more body parameter sensors, processing components, display devices as well as communication links for displaying, recording or transmitting data or results elsewhere through a monitoring network. In the proposed architecture, the data generated by medical monitors are fed into the CEP system. [3]

Figure 3: Architecture of the intelligent patient monitoring system using CEP and ANN

The CEP section of the proposed architecture is one of the key components of the system. It receives all the monitored data and applies various event processing techniques, such as filtering, aggregation etc. over input event streams and provides the data for further processing to ANN module. Various input adapters available in CEP make it possible to collect data from different types of sensors or monitors and process them collectively. In CEP module, various event processing rule are written specific to the patient.

(3) Patient's medical history and diagnosis data store
This is the data store where patient's medical history and diagnosis data is stored. It could be traditional RDBMS storage system. The data stored in this storage are used for ANN training purpose. The new data is continuously added into the same data storage and will be used next time when ANN will be trained again with patient's latest medical and diagnosis data.

(4) ANN
The ANN model for the patient is computational neural network specific to the patient and trained using patient's all medical and diagnosis data. This trained ANN model is used for real-time diagnosis and care delivery. The decision is taken based on the input data coming from the CEP output adapters. The patient specific ANN model is trained at regular interval may be daily or on need bases. These regular updates which include latest knowledge about measured body parameters, diagnosis and medication information of the patient, helps ANN model to make accurate predictions. It is also possible to make ANN take biased decision by giving more weight to either historical data or the latest data during training. All these make ANN the most critical component of the system.

(5) ANN output to action message converter
The output generated by the ANN is generally real numbers and they are needed to be mapped to the meaningful information so that appropriate action can be taken. This is done by the ANN output to action message converter. The module not only map ANN output to real world information but it can also sends action data or alerts to devices or human being through email, SMS, alarm system etc. The threshold for various alerts can be configured so it can adapt to the changes happening to the health and body.

Together all these components make a very flexible, intelligent and efficient patient monitoring system. The proposed architecture shows how one can use CEP and ANN together more effectively to model the complex problem and provide efficient solution alternative over the traditional approaches.

Conclusion
Complex event processing and artificial neural network are the two widely used solution techniques for the problems that are very difficult to model using traditional approaches. In this article, we have described both the approaches in brief with their key capabilities. We have also described a use case for intelligent patient monitoring system with the solution architecture using both CEP and ANN and combining the best capabilities of both the approaches. We have shown how one can use both the techniques together to solve highly complex problems in real or near real time.

References

  1. Complex event processing, http://en.wikipedia.org/wiki/Complex_event_processing#cite_note-1
  2. Artificial neural network, http://en.wikipedia.org/wiki/Artificial_neural_network
  3. Patient Monitoring Systems - Part 1, http://www.philblock.info/hitkb/p/patient_monitoring_systems.html

More Stories By Kamalkumar Mistry

Kamalkumar Mistry is a Technology Analyst at Infosys Limited, Pune, India. At Infosys, he is part of a research group called Infosys Labs (http://www.infosys.com/infosys-labs).

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
CenturyLink has announced that application server solutions from GENBAND are now available as part of CenturyLink’s Networx contracts. The General Services Administration (GSA)’s Networx program includes the largest telecommunications contract vehicles ever awarded by the federal government. CenturyLink recently secured an extension through spring 2020 of its offerings available to federal government agencies via GSA’s Networx Universal and Enterprise contracts. GENBAND’s EXPERiUS™ Application...
"We've discovered that after shows 80% if leads that people get, 80% of the conversations end up on the show floor, meaning people forget about it, people forget who they talk to, people forget that there are actual business opportunities to be had here so we try to help out and keep the conversations going," explained Jeff Mesnik, Founder and President of ContentMX, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
I wanted to gather all of my Internet of Things (IOT) blogs into a single blog (that I could later use with my University of San Francisco (USF) Big Data “MBA” course). However as I started to pull these blogs together, I realized that my IOT discussion lacked a vision; it lacked an end point towards which an organization could drive their IOT envisioning, proof of value, app dev, data engineering and data science efforts. And I think that the IOT end point is really quite simple…
Internet of @ThingsExpo, taking place November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with the 19th International Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world and ThingsExpo Silicon Valley Call for Papers is now open.
You think you know what’s in your data. But do you? Most organizations are now aware of the business intelligence represented by their data. Data science stands to take this to a level you never thought of – literally. The techniques of data science, when used with the capabilities of Big Data technologies, can make connections you had not yet imagined, helping you discover new insights and ask new questions of your data. In his session at @ThingsExpo, Sarbjit Sarkaria, data science team lead ...
WebRTC is bringing significant change to the communications landscape that will bridge the worlds of web and telephony, making the Internet the new standard for communications. Cloud9 took the road less traveled and used WebRTC to create a downloadable enterprise-grade communications platform that is changing the communication dynamic in the financial sector. In his session at @ThingsExpo, Leo Papadopoulos, CTO of Cloud9, discussed the importance of WebRTC and how it enables companies to focus...
"My role is working with customers, helping them go through this digital transformation. I spend a lot of time talking to banks, big industries, manufacturers working through how they are integrating and transforming their IT platforms and moving them forward," explained William Morrish, General Manager Product Sales at Interoute, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
SYS-CON Events announced today that 910Telecom will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Housed in the classic Denver Gas & Electric Building, 910 15th St., 910Telecom is a carrier-neutral telecom hotel located in the heart of Denver. Adjacent to CenturyLink, AT&T, and Denver Main, 910Telecom offers connectivity to all major carriers, Internet service providers, Internet backbones and ...
SYS-CON Events announced today that LeaseWeb USA, a cloud Infrastructure-as-a-Service (IaaS) provider, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. LeaseWeb is one of the world's largest hosting brands. The company helps customers define, develop and deploy IT infrastructure tailored to their exact business needs, by combining various kinds cloud solutions.
For basic one-to-one voice or video calling solutions, WebRTC has proven to be a very powerful technology. Although WebRTC’s core functionality is to provide secure, real-time p2p media streaming, leveraging native platform features and server-side components brings up new communication capabilities for web and native mobile applications, allowing for advanced multi-user use cases such as video broadcasting, conferencing, and media recording.
SYS-CON Events announced today that Venafi, the Immune System for the Internet™ and the leading provider of Next Generation Trust Protection, will exhibit at @DevOpsSummit at 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Venafi is the Immune System for the Internet™ that protects the foundation of all cybersecurity – cryptographic keys and digital certificates – so they can’t be misused by bad guys in attacks...
ReadyTalk has expanded the capabilities of the FoxDen collaboration platform announced late last year to include FoxDen Connect, an in-room video collaboration experience that launches with a single touch. With FoxDen Connect, users can now not only engage in HD video conferencing between iOS and Android mobile devices or Chrome browsers, but also set up in-person meeting rooms for video interactions. A host’s mobile device automatically recognizes the presence of a meeting room via beacon tech...
The cloud market growth today is largely in public clouds. While there is a lot of spend in IT departments in virtualization, these aren’t yet translating into a true “cloud” experience within the enterprise. What is stopping the growth of the “private cloud” market? In his general session at 18th Cloud Expo, Nara Rajagopalan, CEO of Accelerite, explored the challenges in deploying, managing, and getting adoption for a private cloud within an enterprise. What are the key differences between wh...
It’s 2016: buildings are smart, connected and the IoT is fundamentally altering how control and operating systems work and speak to each other. Platforms across the enterprise are networked via inexpensive sensors to collect massive amounts of data for analytics, information management, and insights that can be used to continuously improve operations. In his session at @ThingsExpo, Brian Chemel, Co-Founder and CTO of Digital Lumens, will explore: The benefits sensor-networked systems bring to ...
On Dice.com, the number of job postings asking for skill in Amazon Web Services increased 76 percent between June 2015 and June 2016. Salesforce.com saw its own skill mentions increase 37 percent, while DevOps and Cloud rose 35 percent and 28 percent, respectively. Even as they expand their presence in the cloud, companies are also looking for tech professionals who can manage projects, crunch data, and figure out how to make systems run more autonomously. Mentions of ‘data science’ as a skill ...
Manufacturers are embracing the Industrial Internet the same way consumers are leveraging Fitbits – to improve overall health and wellness. Both can provide consistent measurement, visibility, and suggest performance improvements customized to help reach goals. Fitbit users can view real-time data and make adjustments to increase their activity. In his session at @ThingsExpo, Mark Bernardo Professional Services Leader, Americas, at GE Digital, discussed how leveraging the Industrial Internet a...
In addition to all the benefits, IoT is also bringing new kind of customer experience challenges - cars that unlock themselves, thermostats turning houses into saunas and baby video monitors broadcasting over the internet. This list can only increase because while IoT services should be intuitive and simple to use, the delivery ecosystem is a myriad of potential problems as IoT explodes complexity. So finding a performance issue is like finding the proverbial needle in the haystack.
Amazon has gradually rolled out parts of its IoT offerings in the last year, but these are just the tip of the iceberg. In addition to optimizing their back-end AWS offerings, Amazon is laying the ground work to be a major force in IoT – especially in the connected home and office. Amazon is extending its reach by building on its dominant Cloud IoT platform, its Dash Button strategy, recently announced Replenishment Services, the Echo/Alexa voice recognition control platform, the 6-7 strategic...
Big Data, cloud, analytics, contextual information, wearable tech, sensors, mobility, and WebRTC: together, these advances have created a perfect storm of technologies that are disrupting and transforming classic communications models and ecosystems. In his session at @ThingsExpo, Erik Perotti, Senior Manager of New Ventures on Plantronics’ Innovation team, provided an overview of this technological shift, including associated business and consumer communications impacts, and opportunities it ...
There will be new vendors providing applications, middleware, and connected devices to support the thriving IoT ecosystem. This essentially means that electronic device manufacturers will also be in the software business. Many will be new to building embedded software or robust software. This creates an increased importance on software quality, particularly within the Industrial Internet of Things where business-critical applications are becoming dependent on products controlled by software. Qua...