Click here to close now.



Welcome!

Java IoT Authors: SmartBear Blog, Elizabeth White, Pat Romanski, Jnan Dash, Sanjay Uppal

Related Topics: Java IoT, Industrial IoT, Microservices Expo, IoT User Interface, Apache, Cloud Security

Java IoT: Article

Designing a Java Cryptography Header

Encrypt personal files, exchange confidential messages and authenticate the sender

Designing and implementing a hybrid encryption application is a big challenge but without a supporting infrastructure it's almost impossible. There are open source libraries that allow you to encrypt a file but only provide the translation technique. After the information has been encrypted, how do you know what algorithm was used, who you encrypted it, what version did you used, etc. In order to decrypt the protected message or file, a well-defined cryptographic header provides all the information required. This also applies if the encrypted data is digitally signed and the recipient wants to validate the signature.

This article will address one of the critical components of a support infrastructure by providing a design of a cryptographic header used to precede encrypted and/or digitally signed messages and files. The header is used within an application known as DocuArmor that was written using Java and the Cryptography library from the BouncyCastle organization and designed by Logical Answers Inc. The header will store information used when encrypting and/or digitally signing a message or file and allow the recipient to decrypt the information and/or verify the digital signature. With a properly designed header, a person can encrypt their personal files as well as exchange confidential messages and authenticate the sender.

Hybrid Encryption
In order to encrypt personal files and exchange protected data, we use a hybrid technique with two types of encryption, symmetric and asymmetric.

Symmetric encryption uses a single key to hide the message and reveal the message. There are several symmetric algorithms available such as AES (the Advanced Encryption Standard) but the important thing to remember is that the file can be encrypted and decrypted using the same key. An example is the Caesar cipher that shifts the letters of the alphabet by a specific number. If the shift is 2 (single key) then we get the following translation; a=c, b=d, c=e, ..., z=b.

Asymmetric encryption uses a pair of keys (public, private) to hide and reveal the message and the RSA algorithm is most commonly used. The RSA algorithm was credited in 1977 to Ronald Rivest, Adi Shamir, and Leonard Adleman. Sometimes referred to as Public Key Infrastructure (PKI), the pubic key is used to encrypt data and the private key is used to decrypt data.

Figure 1: Public and Private Key Functions

The hybrid technique uses the symmetric key to encrypt a file. The asymmetric public key is used to encrypt the symmetric key and is placed in the header. When the recipient receives an encrypted file, the encrypted symmetric key is extracted from the header. The encrypted symmetric key is decrypted using the private key. The file is decrypted using the symmetric key.

The same pair of keys can be used with digital signatures. The private key is used to generate a digital signature from a file and inserted into the header. The public key is used to verify the authenticity of the signature.

When two people want to exchange encrypted files, they each generate a pair of asymmetric keys and exchange a copy of their public keys. By using the other person's public key, they can encrypt a file, storing the cryptographic information in the header and then e-mail it to the recipient. The recipient will use the header to extract a symmetric key with their private key and decrypt the accompanying file. If a digital signature is included, the recipient can authenticate the sender.

Figure 2: Exchange of Encrypted Files

Cryptographic Header
When a file is encrypted, digitally signed or both, a Cryptographic header is placed in front of the resulting file and has the following structure. The structure consists of two sections, the header and the encrypted/plain file contents.

Figure 3: Encrypted File Structure

The header structure contains information required to reverse the encryption process and decrypt the contents of the file or verify the digital signature. The header contains the total length, an ID, version, and two sections containing encryption and digital signature information. Using Java, you can write out the contents of header within a byte stream as well as read it back in.

Figure 4: Cryptographic Header Structure

  • Total Len: Contains the total length of the header (stored as a 4 byte integer)
  • Header ID: Contains the string "LAHEADER" to identify the file (16 bytes)
  • Header Version: Structural version of the header (stored as a 4 byte integer)
  • Encryption Information: Holds the algorithm, mode, encrypted symmetric key, etc.
  • Digital Signature Information: Holds digital signature

Encryption Information
The Encryption Information structure contains information that was used to encrypt the contents of the file and later decrypt the file. The symmetric key and initialization vector is encrypted with the recipient's asymmetric public key. The recipient could be the owner if you are encrypting a file for yourself or another user you want to send confidential information to.

An additional field has been allocated to allow the encryption of the symmetric key with another set of asymmetric keys. For example, if owner A is sending an encrypted file to another person B, the symmetric key can be encrypted with B's public key as well as A's public key so that either person can decrypt the file.

Alternatively, an employee can encrypt a file with their public key and a corporation could insert an encrypted symmetric key into the header using their asymmetric keys. The corporation's asymmetric keys can be a Certifying Authority (CA), which can be used to issue employee keys.

Figure 5: Encryption Information Structure

  • Encrypt Flag: (Y/N - 2 bytes) specifies whether the file is encrypted.
  • Decrypt ID Length: (integer - 4 bytes) length in chars(bytes) of the Key ID.
  • Decrypt ID: (size varies) an identifier of the RSA keys used in the encryption/decryption process. It is the alias associated to the asymmetric encryption keys (e.g., JaneDoe_12ff).
  • Other Decrypt ID Length: (integer - 4 bytes) length in chars(bytes) of the Key ID.
  • Other Decrypt ID: (size varies) an identifier of the RSA keys used in the encryption/decryption process. It can be the alias or the common name (e.g., JaneDoe_12ff or Logical Answers CA).
  • Symmetric Key Algorithm: (integer - 4 bytes) specifies the symmetric key algorithm used to encrypt the file. The default value is 1=AES.
  • Symmetric Key Mode: (integer - 4 bytes) specifies the symmetric key block cipher mode used to enhance confidentiality. The default value is 5=Segmented Integer Counter mode (CTR).
  • Symmetric Key Padding: (integer - 4 bytes) specifies the type of padding for block cipher. The default value is 1=No Padding
  • Wrapped Symmetric Key Length: (integer - 4 bytes)
  • Wrapped Symmetric Key: (size varies) symmetric key used to encrypt/decrypt the file and encrypted with the asymmetric key.
  • Initialization Vector Length: (integer - 4 bytes)
  • Initialization Vector: (byte[] - size varies) vector used with the symmetric encryption process.
  • Other Wrapped Symmetric Key Length: (integer - 4 bytes)
  • Other Wrapped Symmetric Key: (size varies) symmetric key used to encrypt/decrypt the file and encrypted with another person's asymmetric key.
  • Other Initialization Vector Length: (integer - 4 bytes)
  • Other Initialization Vector: (byte[] - size varies) vector used with the symmetric encryption process.

Digital Signature Information
The Digital Signature Information structure contains information used to add or verify a digital signature generated from the contents of the file. The digital signature is generated with the owner's private key using a specific algorithm and then inserted into the header. When the recipient receives the signed file, they can use the signer's public key to validate its authenticity. If the signature is authenticated, it implies the file has not been altered and the holder of the private key generated the signature.

Figure 6: Digital Signature Information Structure

  • Signed Flag: (Y/N - 2 bytes) specifies whether the file contains a digital signature
  • Signature Algorithm: (integer - 4 bytes) specifies the algorithm used to generate the digital signature. The default value is 12= SHA512WithRSAEncryption
  • Verify Signature Cert Name Length: (integer - 4 bytes) length in chars(bytes) of the filename of the certificate used to verify a digital signature
  • Verify Signature Cert Name: (size varies) filename of the certificate holding the RSA public key used to verify the digital signature of a file (e.g., JaneDoe_fa39.cer).
  • Signature Date/Time: (long - 8 bytes) date the digital signature was generated.
  • Signature Length: (integer - 4 bytes)
  • Signature: (size varies) holds digital signature generated with RSA private key and signature engine

File Naming Conventions
The Cryptographic header holds information that designates which keys were used to encrypt a file but it's not physically accessible without reading it in first. With proper naming conventions, you can determine who the intended recipient is for encrypted files - whether it is for yourself or a colleague. When you generate your pair of asymmetric encryption keys using Java, store them in a file called a key store. The key store holds a pair of asymmetric keys as an entry with a unique alias. The alias typically consists of the initial of your first name and your last name. To make it more unique, you can extract 4 hex digits from your public key and append an underline and the hex digits to the alias. For example, if the person's name was Jane Smith, then the resulting unique alias would be jsmith_ad5e. A certificate holds a person's public key and the alias would be used in the filename, as jsmith_ad5e.cer. Similarly, the key store holding the pair of asymmetric keys would be saved as, jsmith_ad5e.jks.

Following the unique alias analogy, Jane Smith could encrypt files for herself and the file name would be appended with her alias and an appropriate file extension. For example, if Jane encrypted a personal file, myTaxes.txt, then the result would be myTaxes.txt.jsmith_ad5e.aes. If Jane wanted to send her colleague Dick an encrypted document, she would use Dick's certificate to encrypt it. If Dick's certificate is djones_9fa2, Jane could encrypt the file, comments.doc, for Dick and the resulting file would be comments.doc.djones_9fa2.aes. When Dick receives the file, he knows it is for him by recognizing his alias on the file name.

The unique alias is stored within the header. This reinforces the importance of having a well-defined Cryptographic header for implementing encryption within your applications.

Benefits
A well-defined cryptographic header stores the information required to encrypt, decrypt and digitally sign a file. Along with facilitating the implementation of standard cryptographic functions, the header also provides the following benefits:

  • The header allows for the protection of personal files as well as the exchange of confidential data.
  • Using the stored digital signature, the recipient can determine if the sender is valid and whether file has been altered.
  • The header allows either the sender or recipient to decrypt the encrypted file since both would encrypt the symmetric key with their public key.
  • Using the concept of a Certifying Authority pair of asymmetric keys, a corporation, group, or family could issue pairs of asymmetric keys to their employees or members and decipher files encrypted by them in case of emergencies.
  • The header allows for using different combinations of symmetric algorithms, modes, padding and key sizes to be used to encrypt information.
  • The header version allows for enhancements to be added to the structure for implementing new functions and still support older versions.

References and Other Technical Notes
Software requirements:

Recommended Reading:

  • "Beginning Cryptography with Java" by David Hook.
  • "The Code Book" by Simon Singh

More Stories By James H. Wong

James H. Wong has been involved in the technology field for over 30 years and has dual MS degrees in mathematics and computer science from the University of Michigan. He worked for IBM for almost 10 years designing and implementing software. Founding Logical Answers Corp in 1992, he has provided technical consulting/programming services to clients, providing their business with a competitive edge. With his partner they offer a Java developed suite of “Secure Applications” that protect client’s data using the standard RSA (asymmetric) and AES (symmetric) encryption algorithms.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
SYS-CON Events announced today that Commvault, a global leader in enterprise data protection and information management, has been named “Bronze Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY, and the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Commvault is a leading provider of data protection and information management...
The cloud promises new levels of agility and cost-savings for Big Data, data warehousing and analytics. But it’s challenging to understand all the options – from IaaS and PaaS to newer services like HaaS (Hadoop as a Service) and BDaaS (Big Data as a Service). In her session at @BigDataExpo at @ThingsExpo, Hannah Smalltree, a director at Cazena, will provide an educational overview of emerging “as-a-service” options for Big Data in the cloud. This is critical background for IT and data profes...
SYS-CON Events announced today that VAI, a leading ERP software provider, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. VAI (Vormittag Associates, Inc.) is a leading independent mid-market ERP software developer renowned for its flexible solutions and ability to automate critical business functions for the distribution, manufacturing, specialty retail and service sectors. An IBM Premier Business Part...
SYS-CON Events announced today that Alert Logic, Inc., the leading provider of Security-as-a-Service solutions for the cloud, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Alert Logic, Inc., provides Security-as-a-Service for on-premises, cloud, and hybrid infrastructures, delivering deep security insight and continuous protection for customers at a lower cost than traditional security solutions. Ful...
Fortunately, meaningful and tangible business cases for IoT are plentiful in a broad array of industries and vertical markets. These range from simple warranty cost reduction for capital intensive assets, to minimizing downtime for vital business tools, to creating feedback loops improving product design, to improving and enhancing enterprise customer experiences. All of these business cases, which will be briefly explored in this session, hinge on cost effectively extracting relevant data from ...
With the Apple Watch making its way onto wrists all over the world, it’s only a matter of time before it becomes a staple in the workplace. In fact, Forrester reported that 68 percent of technology and business decision-makers characterize wearables as a top priority for 2015. Recognizing their business value early on, FinancialForce.com was the first to bring ERP to wearables, helping streamline communication across front and back office functions. In his session at @ThingsExpo, Kevin Roberts...
SYS-CON Events announced today that Interoute, owner-operator of one of Europe's largest networks and a global cloud services platform, has been named “Bronze Sponsor” of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2015 at the Javits Center in New York, New York. Interoute is the owner-operator of one of Europe's largest networks and a global cloud services platform which encompasses 12 data centers, 14 virtual data centers and 31 colocation centers, with connections to 195 ad...
With an estimated 50 billion devices connected to the Internet by 2020, several industries will begin to expand their capabilities for retaining end point data at the edge to better utilize the range of data types and sheer volume of M2M data generated by the Internet of Things. In his session at @ThingsExpo, Don DeLoach, CEO and President of Infobright, will discuss the infrastructures businesses will need to implement to handle this explosion of data by providing specific use cases for filte...
As enterprises work to take advantage of Big Data technologies, they frequently become distracted by product-level decisions. In most new Big Data builds this approach is completely counter-productive: it presupposes tools that may not be a fit for development teams, forces IT to take on the burden of evaluating and maintaining unfamiliar technology, and represents a major up-front expense. In his session at @BigDataExpo at @ThingsExpo, Andrew Warfield, CTO and Co-Founder of Coho Data, will dis...
SYS-CON Events announced today that Fusion, a leading provider of cloud services, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Fusion, a leading provider of integrated cloud solutions to small, medium and large businesses, is the industry's single source for the cloud. Fusion's advanced, proprietary cloud service platform enables the integration of leading edge solutions in the cloud, including clou...
Most people haven’t heard the word, “gamification,” even though they probably, and perhaps unwittingly, participate in it every day. Gamification is “the process of adding games or game-like elements to something (as a task) so as to encourage participation.” Further, gamification is about bringing game mechanics – rules, constructs, processes, and methods – into the real world in an effort to engage people. In his session at @ThingsExpo, Robert Endo, owner and engagement manager of Intrepid D...
Eighty percent of a data scientist’s time is spent gathering and cleaning up data, and 80% of all data is unstructured and almost never analyzed. Cognitive computing, in combination with Big Data, is changing the equation by creating data reservoirs and using natural language processing to enable analysis of unstructured data sources. This is impacting every aspect of the analytics profession from how data is mined (and by whom) to how it is delivered. This is not some futuristic vision: it's ha...
WebRTC has had a real tough three or four years, and so have those working with it. Only a few short years ago, the development world were excited about WebRTC and proclaiming how awesome it was. You might have played with the technology a couple of years ago, only to find the extra infrastructure requirements were painful to implement and poorly documented. This probably left a bitter taste in your mouth, especially when things went wrong.
Learn how IoT, cloud, social networks and last but not least, humans, can be integrated into a seamless integration of cooperative organisms both cybernetic and biological. This has been enabled by recent advances in IoT device capabilities, messaging frameworks, presence and collaboration services, where devices can share information and make independent and human assisted decisions based upon social status from other entities. In his session at @ThingsExpo, Michael Heydt, founder of Seamless...
The IoT's basic concept of collecting data from as many sources possible to drive better decision making, create process innovation and realize additional revenue has been in use at large enterprises with deep pockets for decades. So what has changed? In his session at @ThingsExpo, Prasanna Sivaramakrishnan, Solutions Architect at Red Hat, discussed the impact commodity hardware, ubiquitous connectivity, and innovations in open source software are having on the connected universe of people, thi...
WebRTC: together these advances have created a perfect storm of technologies that are disrupting and transforming classic communications models and ecosystems. In his session at WebRTC Summit, Cary Bran, VP of Innovation and New Ventures at Plantronics and PLT Labs, provided an overview of this technological shift, including associated business and consumer communications impacts, and opportunities it may enable, complement or entirely transform.
There are so many tools and techniques for data analytics that even for a data scientist the choices, possible systems, and even the types of data can be daunting. In his session at @ThingsExpo, Chris Harrold, Global CTO for Big Data Solutions for EMC Corporation, showed how to perform a simple, but meaningful analysis of social sentiment data using freely available tools that take only minutes to download and install. Participants received the download information, scripts, and complete end-t...
For manufacturers, the Internet of Things (IoT) represents a jumping-off point for innovation, jobs, and revenue creation. But to adequately seize the opportunity, manufacturers must design devices that are interconnected, can continually sense their environment and process huge amounts of data. As a first step, manufacturers must embrace a new product development ecosystem in order to support these products.
Manufacturing connected IoT versions of traditional products requires more than multiple deep technology skills. It also requires a shift in mindset, to realize that connected, sensor-enabled “things” act more like services than what we usually think of as products. In his session at @ThingsExpo, David Friedman, CEO and co-founder of Ayla Networks, discussed how when sensors start generating detailed real-world data about products and how they’re being used, smart manufacturers can use the dat...
When it comes to IoT in the enterprise, namely the commercial building and hospitality markets, a benefit not getting the attention it deserves is energy efficiency, and IoT’s direct impact on a cleaner, greener environment when installed in smart buildings. Until now clean technology was offered piecemeal and led with point solutions that require significant systems integration to orchestrate and deploy. There didn't exist a 'top down' approach that can manage and monitor the way a Smart Buildi...