Welcome!

Java IoT Authors: Yeshim Deniz, Pat Romanski, Liz McMillan, Zakia Bouachraoui, Elizabeth White

Related Topics: Java IoT, Open Source Cloud, Machine Learning , Agile Computing, @CloudExpo, @DXWorldExpo

Java IoT: Article

How to Identify a MongoDB Performance Anti Pattern in Five Minutes

Analyzing the application

The other day I was looking at a web application that was using MongoDB as its central database. We were analyzing the application for potential performance problems and inside five minutes I detected what I must consider to be a MongoDB anti pattern and had a 40% impact on response time. The funny thing: It was a Java best practice that triggered it.

Analyzing the Application
The first thing I always do is look at the topology of an application to get a feel for it.

Overall Transaction Flow of the Application

As we see it's a modestly complex web application and it's using MongoDB as its datastore. Overall MongoDB contributes about 7% to the response time of the application. I noticed that about half of all transactions are actually calling MongoDB so I took a closer look.

Flow of Transactions that access MongoDB, showing 10% response time contribution of MongoDB

Those transactions that actually do call MongoDB spend about 10% of their response time in that popular document database. As a next step I wanted to know what was being executed against MongoDB.

Overview of all MongoDB commands. This shows that the JourneyCollection find and getCount contribute the most to response time

One immediately notices the first two lines, which contribute much more to the response time per transaction than all the others. What was interesting was that thegetCount on the JourneyCollection had the highest contribution time, but the developer responsible was not aware that he was even using it anywhere.

Things get interesting - the mysterious getCount call
Taking things one level deeper, we looked at all transactions that were executing the ominous getCount on the JourneyCollection.

Transactions that call JourneyCollection.getCount spend nearly half their time in MongoDB

What jumps out is that those particular transactions spend indeed over 40% of their time in MongoDB, so there was a big potential for improvement here. Another click and we looked at all MongoDB calls that were executed within the context of the same transaction as the getCount call we found so mysterious.

All MongoDB Statements that run within the same transaction context as the JourneyCollection.getCount

What struck us as interesting was that the number of executions per transaction of thefind and getCount on the JourneyCollection seemed closely connected. At this point we decided to look at the transactions themselves - we needed to understand why that particular MongoDB call was executed.

Single Transactions that execute the ominous getCount call

It's immediately clear that several different transaction types are executing that particulargetCount. What that meant for us is that the problem was likely in the core framework of that particular application rather than being specific to any one user action. Here is the interesting snippet:

The Transaction Trace shows where the getCount is executed exactly

We see that the WebService findJourneys spends all its time in the two MongoDB calls. The first is the actual find call to the Journey Collection. The MongoDB client is good at lazy loading, so the find does not actually do much yet. It only calls the server once we access the result set. We can see the round trip to MongoDB visualized in the call node at the end.

We also see the offending getCount. We see that it is executed by a method called sizewhich turns out to be com.mongodb.DBCursor.size method. This was news to our developer. Looking at several other transactions we found that this was a common pattern. Every time we search for something in the JourneyCollection the getCountwould be executed by com.mongodb.DBCursor.size. This always happens before we would really execute the send the find command to the server(which happens in the callmethod). So we used CompuwareAPM DTM's (a.k.a dynaTrace) developer integration and took a look at the offending code. Here is what we found:

BasicDBObject fields = new BasicDBObject();
fields.put(journeyStr + "." + MongoConstants.ID, 1);
fields.put(MongoConstants.ID, 0);

Collection locations = find(patternQuery, fields);

ArrayList results = new ArrayList(locations.size());
for (DBObject dbObject : locations) {
String loc = dbObject.getString(journeyStr);
results.add(loc);
}
return results;


The code looks harmless enough; we execute a find, create an array for the result and fill it. The offender is the location.size(). MongoDBs DBCursor is similar to the ResultSet in JDBC, it does not return the whole data set at once, but only a subset. As a consequence it doesn't really know how many elements the find will end up with. The only way for MongoDB to determine the final size seems to be to execute a getCountwith the same criteria as the original find. In our case that additional unnecessary roundtrip made up 40% of the web services response time!

An Anti-Patter triggered by a Best Practice
So it turns out that calling size on the DBCursor must be considered an anti-pattern! The real funny thing is that the developer thought he was writing performant code. He was following the best practice to pre-size arrays. This avoids any unnecessary re-sizing. In this particular case however, that minor theoretical performance improvement led to a 40% performance degradation!

Conclusion
The take away here is not that MongoDB is bad or doesn't perform. In fact the customer is rather happy with it. But mistakes happen and similar to other database applications we need to have the visibility into a running application to see how much it contributes to the overall response time. We also need to have that visibility to understand which statements are called where and why.

In addition this also demonstrates nicely why premature micro optimization, without leveraging an APM solution, in production will not lead to better performance. In some cases - like this one - it can actually lead to worse performance.

More Stories By Michael Kopp

Michael Kopp has over 12 years of experience as an architect and developer in the Enterprise Java space. Before coming to CompuwareAPM dynaTrace he was the Chief Architect at GoldenSource, a major player in the EDM space. In 2009 he joined dynaTrace as a technology strategist in the center of excellence. He specializes application performance management in large scale production environments with special focus on virtualized and cloud environments. His current focus is how to effectively leverage BigData Solutions and how these technologies impact and change the application landscape.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


IoT & Smart Cities Stories
IoT is rapidly becoming mainstream as more and more investments are made into the platforms and technology. As this movement continues to expand and gain momentum it creates a massive wall of noise that can be difficult to sift through. Unfortunately, this inevitably makes IoT less approachable for people to get started with and can hamper efforts to integrate this key technology into your own portfolio. There are so many connected products already in place today with many hundreds more on the h...
Digital Transformation is much more than a buzzword. The radical shift to digital mechanisms for almost every process is evident across all industries and verticals. This is often especially true in financial services, where the legacy environment is many times unable to keep up with the rapidly shifting demands of the consumer. The constant pressure to provide complete, omnichannel delivery of customer-facing solutions to meet both regulatory and customer demands is putting enormous pressure on...
Business professionals no longer wonder if they'll migrate to the cloud; it's now a matter of when. The cloud environment has proved to be a major force in transitioning to an agile business model that enables quick decisions and fast implementation that solidify customer relationships. And when the cloud is combined with the power of cognitive computing, it drives innovation and transformation that achieves astounding competitive advantage.
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
Charles Araujo is an industry analyst, internationally recognized authority on the Digital Enterprise and author of The Quantum Age of IT: Why Everything You Know About IT is About to Change. As Principal Analyst with Intellyx, he writes, speaks and advises organizations on how to navigate through this time of disruption. He is also the founder of The Institute for Digital Transformation and a sought after keynote speaker. He has been a regular contributor to both InformationWeek and CIO Insight...
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Early Bird Registration Discount Expires on August 31, 2018 Conference Registration Link ▸ HERE. Pick from all 200 sessions in all 10 tracks, plus 22 Keynotes & General Sessions! Lunch is served two days. EXPIRES AUGUST 31, 2018. Ticket prices: ($1,295-Aug 31) ($1,495-Oct 31) ($1,995-Nov 12) ($2,500-Walk-in)
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
Nicolas Fierro is CEO of MIMIR Blockchain Solutions. He is a programmer, technologist, and operations dev who has worked with Ethereum and blockchain since 2014. His knowledge in blockchain dates to when he performed dev ops services to the Ethereum Foundation as one the privileged few developers to work with the original core team in Switzerland.
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...