Java IoT Authors: Pat Romanski, Yeshim Deniz, Carmen Gonzalez, Cloud Best Practices Network, Elizabeth White

Related Topics: Java IoT, Microservices Expo, IoT User Interface, Agile Computing, Recurring Revenue, Cloud Security, SDN Journal

Java IoT: Article

Java Cryptography | Part 3

Decryption and verifying signatures

After you have secured your private electronic information using encryption and learned how to encrypt and digitally sign files for others, how do you extract the information and determine who encrypted the file? Asymmetric public/private key encryption allows you to decipher the information and verify the accompanying digital signature if it exists.

This article illustrates how to decrypt and verify the digital signature on files encrypted using a hybrid combination of asymmetric public/private key encryption and symmetric encryption. A symmetric key is used to encrypt the file and the asymmetric public key encrypts the symmetric key. The asymmetric private key decrypts the symmetric key which in turn is used to decrypt the encrypted file.

Figure1: Asymmetric Key Encryption Functions

The same pair of keys can be used with digital signatures. The private key is used to sign a file and generate a digital signature. The public key is used to verify the authenticity of the signature.

Figure 2: Asymmetric Key Signature Functions

The decryption technique requires the Java libraries developed by the Legion of the Bouncy Castle (www.bouncycastle.org). The Bouncy Castle jars, bcprov-jdk15on-147.jar and bcpkix-jdk15on-147.jar, contains all the methods required to encrypt, decrypt, sign and verify a digital signature. The following Java code snippet loads the BouncyCastle provider, which implements the Java Cryptography Security services such as algorithms and key generation.

import org.bouncycastle.jce.provider.*;
java.security.Security.addProvider(new BouncyCastleProvider());

Decryption for Files or Java Objects
Once a file has been encrypted and/or signed using the DocuArmor application, it can be deciphered by the owner of the matching asymmetric private key. The process involves reading the header, extracting the symmetric key and deciphering the appended encrypted data. The following steps along with the Java code snippets illustrate the process used to decrypt an encrypted file.

Step 1: Assume you want to decrypt the encrypted file, C:\sampleFile.txt.jxdoe_nnnn.asg and the String variable, tUniqueAlias = "jxdoe_nnnn", holds the alias associated to the encrypted file. Read the header from the encrypted file and determine decrypted output name.

File tSrcFile = new File("C:\\sampleFile.txt." + tUniqueAlias + ".aes");
String tDecryptFile = tSrcFile.getName();
tDecryptFile = tDecryptFile.substring(0, tDecryptFile.lastIndexOf('.'));
tDecryptFile = tDecryptFile.substring(0, tDecryptFile.lastIndexOf('.'));
OutputStream tFileOStream = new FileOutputStream(tDecryptFile);
DataInputStream tDInStream =
new DataInputStream(new FileInputStream(tSrcFile));
Object tRC = CryptoHeader.readHeader(tDInStream);
CryptoHeader tHead = (CryptoHeader)tRC;

Step 2: The private key is stored in a Java key store and is password protected. Load the key store using your password. Retrieve the asymmetric private key from the key store using the same password. The asymmetric private key will be used to decrypt the symmetric key.

FileInputStream tFIStream = new FileInputStream("C:\\jxdoe_nnnn.jks");
KeyStore tMyKStore = KeyStore.getInstance("JKS", "SUN");
char[] tPW = "password".toCharArray();
tMyKStore.load(tFIStream, tPW);
PrivateKey tPrivKey = (PrivateKey)tMyKStore.getKey("jxdoe_nnnn", tPW);

Figure 3: Private Key

Step 3: Generate a Java Cipher object using the asymmetric private key and set its mode to "Cipher.UNWRAP_MODE".

Cipher tCipherRSA = Cipher.getInstance("RSA", "BC");
tCipherRSA.init(Cipher.UNWRAP_MODE, (PrivateKey)tPrivKey);

Step 4: Use the Java Cipher and asymmetric private key to unwrap the symmetric key. It's located in the header at the instance variable, wrappedSymKey or wrappedSymKeyOther, along with symmetric algorithm at symKeyAlgDesc. The symmetric key will be used to decrypt the file.

String tAlg = tHead.symKeyAlgDesc();
Key tSymmetricKey =
tCipherRSA.unwrap(tHead.wrappedSymKey(),tAlg, Cipher.SECRET_KEY);

Figure 4: Unwrap Symmetric Key

Step 5: Re-initialize the same Cipher to Cipher.DECRYPT_MODE. Use the Cipher and the asymmetric private key to decrypt the initialization vector stored within the header at the instance variable initVector or initVectorOther.

tCipher.init(Cipher.DECRYPT_MODE, (PrivateKey)tPrivKey);
byte[] tInitVector = tCipher.doFinal(tHead.initVector());
IvParameterSpec tIvParmSpec = new IvParameterSpec(tInitVector);

Figure 5: Unwrap Initialization Vector

Step 6: Generate a Java Cipher object using the symmetric key and initialization vector and set its mode to "Cipher.DECRYPT_MODE". The string representing the symmetric algorithm, mode and padding can be extracted from the Cryptography header using the "transformation" method.

tCipherDecrypt = Cipher.getInstance("AES/CTR/PKCS7Padding", "BC");
or tCipherDecrypt = Cipher.getInstance(tHead.transformation(), "BC");
tCipherDecrypt.init(Cipher.DECRYPT_MODE, tSymmetricKey, tIvParmSpec);

Step 7: Use the Java Cipher to decrypt the rest of the file to a Java FileOutputStream. The DataInputStream points to the start of the encrypted data after reading the header. The end result is a decrypted file.

byte[] tInBuffer = new byte[4096];
byte[] tOutBuffer = new byte[4096];
int tNumOfBytesRead = tDInStream.read(tInBuffer);
while (tNumOfBytesRead == tInBuffer.length) {
//-Encrypt the input buffer data and store in the output buffer
int tNumOfBytesUpdated =
tCipherDecrypt.update(tInBuffer, 0, tInBuffer.length, tOutBuffer);
tFileOStream.write(tOutBuffer, 0, tNumOfBytesUpdated);
tNumOfBytesRead = tDInStream.read(tInBuffer);
//-Process the remaining bytes in the input file.
if (tNumOfBytesRead > 0) {
tOutBuffer = tCipherDecrypt.doFinal(tInBuffer, 0, tNumOfBytesRead);
} else {
tOutBuffer = tCipherDecrypt.doFinal();
tFileOStream.write(tOutBuffer, 0, tOutBuffer.length);

Figure 6: Decipher the Encrypted File

Step 7a: If the encrypted file contains a Java object, use the Java Cipher to decrypt the rest of the file to a Java ByteArrayOutputStream instead of a FileOutputStream. The end result can be converted to an instance of its original Java class.

ByteArrayInputStream tBAIS = new ByteArrayInputStream(tBAOS.toByteArray());  
ObjectInput tOIS = new ObjectInputStream(tBAIS);
Object tObject = tOIS.readObject();  //-Original Java object

Alternatively, the same technique can be used to decrypt the encrypted file using the symmetric key that was wrapped with the CA or owner's asymmetric public key. If the file was encrypted for another user, the owner can decrypt it using the additionally wrapped symmetric key. If the file was encrypted for oneself, the CA can decrypt it using the additionally wrapped symmetric key in the enterprise version.

Signature Verification
When a file has been digitally signed with a user's asymmetric private key, the signature is stored in the Cryptography header. The signature can be validated with the user's matching asymmetric public key stored in a certificate. The process involves reading the header, extracting the digital signature and validating it against the rest of the signed file and the asymmetric public key. The following steps describe the process used to verify a digital signature.

Step 1: Assume you want to verify the signature on the encrypted and digitally signed file, "C:\sampleFile.txt.jxdoe_nnnn.asg" and the String variable, tUniqueAlias = "jxdoe_nnnn", holds the alias associated to the file. Read the header from the signed file. After the header is read, keep in mind that the DataInputStream now points to the beginning of the encrypted data.

File tSrcFile = new File("C:\\sampleFile.txt." + tUniqueAlias + ".asg");
DataInputStream tDInStream =
new DataInputStream(new FileInputStream(tSrcFile));
Object tRC = CryptoHeader.readHeader(tDInStream);
CryptoHeader tHead = (CryptoHeader)tRC;
byte[] tCurrSignature = tHead.signature();

Step 2: Retrieve the certificate whose name is stored in the header and contains the asymmetric public key needed for verification. Retrieve the asymmetric public key from the certificate associated with the digital signature.

String tCertName = "C:\\" + tHead.verifySigCertName();
InputStream tInStream = new FileInputStream(tCertName);
CertificateFactory tFactory = CertificateFactory.getInstance("X.509","BC");
X509Certificate tCert =
PublicKey tPubKey = tCert.getPublicKey();

Figure 7: Extract Public Key

Step 3: Instantiate a Java signature engine and initialize it with the signature algorithm stored in the header and the asymmetric public key. The default value is "SHA512WithRSAEncryption".

Signature tSgnVerifyEngine = null;
String tSigAlg = tHead.signatureAlgDesc();
tSgnVerifyEngine = Signature.getInstance(tSigAlg,"BC");

Step 4: Use the Java signature engine to process the rest of the signed file and calculate a hash number that will be compared with the signature stored in the header.

int tBlockSize = 4096;
byte[] tBuffer = new byte[tBlockSize];
int tLength = tDInStream.read(tBuffer);
while (tLength == tBlockSize) {
tSgnVerifyEngine.update(tBuffer, 0, tBlockSize);
tLength = tDInStream.read(tBuffer);

if (tLength > 0) {
tSgnVerifyEngine.update(tBuffer, 0, tLength);

Step 5: After the file has been processed, use the Java signature engine to verify its result with the digital signature. A Boolean result is returned on whether the signature was valid.

Boolean tResult = tSgnVerifyEngine.verify(tCurrSignature);

The article demonstrates how to decrypt and verify the digit signature of and encrypted file using Java Cryptography methods and the Cryptography libraries from Bouncy Castle organization. Using the information provided within the Cryptography header, the user can validate who encrypted its contents and/or decipher the encrypted file. The header also provides the flexibility to expand the usage of Cryptography such as allowing multiple recipients to decrypt a file by using each of their public keys to encrypt the same symmetric key. As society adopts file encryption as a standard way of protection, more creative uses will be invented by future Cyber warriors.

The source code (LaCryptoJarSample.java) is available on the Logical Answers Inc. website under the education web page as an individual file and also within the zip file, laCrypto-4.2.0.zipx.

References and Other Technical Notes
Software requirements:

  • Computer running Windows XP or higher...
  • Java Runtime (JRE V1.7 or higher)

Recommended reading:

  • "Beginning Cryptography with Java" by David Hook.
  • "The Code Book" by Simon Singh

More Stories By James H. Wong

James H. Wong has been involved in the technology field for over 30 years and has dual MS degrees in mathematics and computer science from the University of Michigan. He worked for IBM for almost 10 years designing and implementing software. Founding Logical Answers Corp in 1992, he has provided technical consulting/programming services to clients, providing their business with a competitive edge. With his partner they offer a Java developed suite of “Secure Applications” that protect client’s data using the standard RSA (asymmetric) and AES (symmetric) encryption algorithms.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

@ThingsExpo Stories
The IoT has the potential to create a renaissance of manufacturing in the US and elsewhere. In his session at 18th Cloud Expo, Florent Solt, CTO and chief architect of Netvibes, discussed how the expected exponential increase in the amount of data that will be processed, transported, stored, and accessed means there will be a huge demand for smart technologies to deliver it. Florent Solt is the CTO and chief architect of Netvibes. Prior to joining Netvibes in 2007, he co-founded Rift Technologi...
SYS-CON Events announced today that Streamlyzer will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Streamlyzer is a powerful analytics for video streaming service that enables video streaming providers to monitor and analyze QoE (Quality-of-Experience) from end-user devices in real time.
@ThingsExpo has been named the Top 5 Most Influential M2M Brand by Onalytica in the ‘Machine to Machine: Top 100 Influencers and Brands.' Onalytica analyzed the online debate on M2M by looking at over 85,000 tweets to provide the most influential individuals and brands that drive the discussion. According to Onalytica the "analysis showed a very engaged community with a lot of interactive tweets. The M2M discussion seems to be more fragmented and driven by some of the major brands present in the...
Established in 1998, Calsoft is a leading software product engineering Services Company specializing in Storage, Networking, Virtualization and Cloud business verticals. Calsoft provides End-to-End Product Development, Quality Assurance Sustenance, Solution Engineering and Professional Services expertise to assist customers in achieving their product development and business goals. The company's deep domain knowledge of Storage, Virtualization, Networking and Cloud verticals helps in delivering ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at @ThingsExpo, James Kirkland, Red Hat's Chief Arch...
SYS-CON Media announced today that @WebRTCSummit Blog, the largest WebRTC resource in the world, has been launched. @WebRTCSummit Blog offers top articles, news stories, and blog posts from the world's well-known experts and guarantees better exposure for its authors than any other publication. @WebRTCSummit Blog can be bookmarked ▸ Here @WebRTCSummit conference site can be bookmarked ▸ Here
WebRTC defines no default signaling protocol, causing fragmentation between WebRTC silos. SIP and XMPP provide possibilities, but come with considerable complexity and are not designed for use in a web environment. In his session at @ThingsExpo, Matthew Hodgson, technical co-founder of the Matrix.org, discussed how Matrix is a new non-profit Open Source Project that defines both a new HTTP-based standard for VoIP & IM signaling and provides reference implementations.
Virgil consists of an open-source encryption library, which implements Cryptographic Message Syntax (CMS) and Elliptic Curve Integrated Encryption Scheme (ECIES) (including RSA schema), a Key Management API, and a cloud-based Key Management Service (Virgil Keys). The Virgil Keys Service consists of a public key service and a private key escrow service. 

In his keynote at 19th Cloud Expo, Sheng Liang, co-founder and CEO of Rancher Labs, will discuss the technological advances and new business opportunities created by the rapid adoption of containers. With the success of Amazon Web Services (AWS) and various open source technologies used to build private clouds, cloud computing has become an essential component of IT strategy. However, users continue to face challenges in implementing clouds, as older technologies evolve and newer ones like Docke...
@ThingsExpo has been named the Top 5 Most Influential Internet of Things Brand by Onalytica in the ‘The Internet of Things Landscape 2015: Top 100 Individuals and Brands.' Onalytica analyzed Twitter conversations around the #IoT debate to uncover the most influential brands and individuals driving the conversation. Onalytica captured data from 56,224 users. The PageRank based methodology they use to extract influencers on a particular topic (tweets mentioning #InternetofThings or #IoT in this ...
You have great SaaS business app ideas. You want to turn your idea quickly into a functional and engaging proof of concept. You need to be able to modify it to meet customers' needs, and you need to deliver a complete and secure SaaS application. How could you achieve all the above and yet avoid unforeseen IT requirements that add unnecessary cost and complexity? You also want your app to be responsive in any device at any time. In his session at 19th Cloud Expo, Mark Allen, General Manager of...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life sett...
In the next five to ten years, millions, if not billions of things will become smarter. This smartness goes beyond connected things in our homes like the fridge, thermostat and fancy lighting, and into heavily regulated industries including aerospace, pharmaceutical/medical devices and energy. “Smartness” will embed itself within individual products that are part of our daily lives. We will engage with smart products - learning from them, informing them, and communicating with them. Smart produc...
Just over a week ago I received a long and loud sustained applause for a presentation I delivered at this year’s Cloud Expo in Santa Clara. I was extremely pleased with the turnout and had some very good conversations with many of the attendees. Over the next few days I had many more meaningful conversations and was not only happy with the results but also learned a few new things. Here is everything I learned in those three days distilled into three short points.
SYS-CON Events announced today that Coalfire will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Coalfire is the trusted leader in cybersecurity risk management and compliance services. Coalfire integrates advisory and technical assessments and recommendations to the corporate directors, executives, boards, and IT organizations for global brands and organizations in the technology, cloud, health...
SYS-CON Events announced today that MathFreeOn will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. MathFreeOn is Software as a Service (SaaS) used in Engineering and Math education. Write scripts and solve math problems online. MathFreeOn provides online courses for beginners or amateurs who have difficulties in writing scripts. In accordance with various mathematical topics, there are more tha...
Cloud based infrastructure deployment is becoming more and more appealing to customers, from Fortune 500 companies to SMEs due to its pay-as-you-go model. Enterprise storage vendors are able to reach out to these customers by integrating in cloud based deployments; this needs adaptability and interoperability of the products confirming to cloud standards such as OpenStack, CloudStack, or Azure. As compared to off the shelf commodity storage, enterprise storages by its reliability, high-availabil...
In the next forty months – just over three years – businesses will undergo extraordinary changes. The exponential growth of digitization and machine learning will see a step function change in how businesses create value, satisfy customers, and outperform their competition. In the next forty months companies will take the actions that will see them get to the next level of the game called Capitalism. Or they won’t – game over. The winners of today and tomorrow think differently, follow different...
We all know the latest numbers: Gartner, Inc. forecasts that 6.4 billion connected things will be in use worldwide in 2016, up 30 percent from last year, and will reach 20.8 billion by 2020. We're rapidly approaching a data production of 40 zettabytes a day – more than we can every physically store, and exabytes and yottabytes are just around the corner. For many that’s a good sign, as data has been proven to equal money – IF it’s ingested, integrated, and analyzed fast enough. Without real-tim...
SYS-CON Events announced today that Transparent Cloud Computing (T-Cloud) Consortium will exhibit at the 19th International Cloud Expo®, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. The Transparent Cloud Computing Consortium (T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data proces...