Welcome!

Java IoT Authors: Liz McMillan, Elizabeth White, Yeshim Deniz, Zakia Bouachraoui, Pat Romanski

Blog Feed Post

Data Science Education gets personal

by Joseph B. Rickert It is difficult to imagine that there is anyone on the planet with an internet connection and a desire to learn something new who has not at least looked into taking a massive open online course (MOOC). Last Fall, in an 11/4/12 article, the New York Time declared the Year of the MOOC and quoted one of Coursera’s founders, Andrew Ng, of Stanford Machine Learning fame, as boasting that with over 1.7 million students “Coursera was growing faster than Facebook”. This year with both Udacity and Harvard and MIT backed edX offering interesting and challenging courses the growth of MOOC enrolment must be astounding indeed. I think this is all good and I have written about it before . Being the perpetual student, I have looked over the syllabi of quite a few courses that seem to be pretty exciting, but I am struggling to carve out the time to devote to them.  MOOC courses are “free”, but for a working professional they not without opportunity costs. In fact, it is not clear that a course designed to add value to 100,000 plus people at one time is the most effective way for professionals working in or around data science to make progress. Tony Ojeda of the R-users-DC saw the interest professionals have in learning more about data science, and realized that even with the prevalence of MOOC courses there are educational needs that are not being met. In a recent email Tony wrote: I started attending data meetups like R Users DC and Data Science DC about a year and a half ago … and these events really made me realize that there are a bunch of people out there who, like me, wanted to learn more about data science, machine learning, and analytics.  However, I noticed that there isn't really a set path for people that want to get started learning data science.  It all depends on your current context and learning how to apply the methods and tools to what you're currently doing. Tony also noticed that many of the people attending the meetups were very knowledgeable about statistics, programming or other aspects of data science. And, as he describes it: I'm sort of an efficiency freak, so I automatically thought, “It would be awesome if I could just find someone who knew more than me about whatever I'm trying to do so that I could get past these hurdles and get my work done."  The result of Tony’s musings was that on January 9th of this year he announced www.sagebourse.com , a bare bones site for matching students with data science tutors in the greater DC area (including Maryland and Virginia). Students accessing the sight can express and interest in being tutored in either Data Science or Programming. Currently, Data Science topics are limited to Statistics, R, Machine Learning, Matlab/Octave or Excel.  The programming languages listed are: Python, Ruby, Java, Javascript, C, C++, Perl and PHP. In addition to these topics, sagebourse.com is also looking for tutors in SAS, SPSS, Stata, Hadoop, Access and Data Visualization. Tutors who register with the sagebourse.com “bid” on the gig by providing the hourly rate at which they are willing to teach a subject. When students register with the site they fill out a form indicating the subject they want to be tutored in, provide contact information and indicate where they would want the tutoring to take place. Students then receive an email with bids from several tutors. Presently, the process of matching tutors with students takes a few days depending on the responsiveness of tutors and students. These are still very early days for sagebourse.com. About 20 tutors have registered with the site and according to Tony they have already had a “handful” of successful tutoring sessions. Statistics and R are by far the most popular areas of expertise professed by the tutors who have registered, and “In terms of demand from students, it has been R, Statistics, and Machine Learning in that order”.   I am excited about what sagebourse.com is trying to do, and I hope that it can make a big, positive contribution to the R community.

Read the original blog entry...

More Stories By David Smith

David Smith is Vice President of Marketing and Community at Revolution Analytics. He has a long history with the R and statistics communities. After graduating with a degree in Statistics from the University of Adelaide, South Australia, he spent four years researching statistical methodology at Lancaster University in the United Kingdom, where he also developed a number of packages for the S-PLUS statistical modeling environment. He continued his association with S-PLUS at Insightful (now TIBCO Spotfire) overseeing the product management of S-PLUS and other statistical and data mining products.<

David smith is the co-author (with Bill Venables) of the popular tutorial manual, An Introduction to R, and one of the originating developers of the ESS: Emacs Speaks Statistics project. Today, he leads marketing for REvolution R, supports R communities worldwide, and is responsible for the Revolutions blog. Prior to joining Revolution Analytics, he served as vice president of product management at Zynchros, Inc. Follow him on twitter at @RevoDavid

IoT & Smart Cities Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...