Click here to close now.




















Welcome!

Java IoT Authors: Adrian Bridgwater, Nicholas Lee, Elizabeth White, Mike Kavis, Liz McMillan

Related Topics: Java IoT, Industrial IoT, Microservices Expo, IBM Cloud, Weblogic, IoT User Interface

Java IoT: Article

Component Models in Java | Part 1

Component-oriented programming is a preferred solution to address the increasing complexity in developing software applications

A component is a reusable software entity. A component is a deployable piece of software that can be independently developed and maintained. In the previous article -Componentizing a Monolithic Application in Java, we discussed the need for componentizing applications to get the benefits of reusability and modularity. We also looked at how an E-Store application can be componentized using a simple component model developed by the authors using a factory whiteboard pattern and a simple repository.

In Part 1 of this article we will try to understand various component models in Java and provide a brief comparison of the features provided by them. Traditionally to explain component-based software engineering (CBSE) principles, popular component frameworks like CORBA, DCOM and JavaBeans are used. Instead of this traditional approach, this article will focus on the latest and widely adopted component models and frameworks specific to Java platform such as Enterprise JavaBeans Component Model (EJB), OSGi Component Model (OSGi), Spring Component Model (spring) and Component Model using Service Component Architecture (SCA).

In this article, first an introduction of component is given and types of components are explained and then the four component models are discussed in brief. At the end, a summary of the four component models is given.

Understanding Components
Component-oriented programming is a preferred solution to address the increasing complexity in developing software applications. Component oriented development has many advantages. Typically a component is accessed using an interface that is provided by the component. A component can also depend on other interfaces provided by other components for fulfilling the functionality. Components are developed, assembled and composed with the help of a standardized component model. Each component model has its own standards for development and composition. These component models provide are accompanied by component framework which provides the runtime environment where these components are executed.

Components can be classified into different types depending on where and how they are used. We try to classify the components into the following types based on their usage in N-tier architecture.

  • UI Components
    • Reusable components created for User Interface in applications. These components typically represent UI elements like form control - text field, radio button, data grid, table etc. used for managing the presentation tier of the application.
  • Business Components
    • Reusable components that contain the business logic of the application. The components are usually POJO based, developed and deployed according to a standardized component model. The model also provides the environment for execution of these components.
  • Persistence Components
    • Reusable components used in the persistence tier of an enterprise application. These components typically help in managing the persistence between the enterprise application and the data store.
  • Application Services Components
    • Reusable components which perform services like security, infrastructure management, transaction and validation for the application. These components are used along with the business components since they provide the application services required for the business components.

There are several models and frameworks available to develop each type of component. The focus of this article is on the business components; we will try to understand how the business components can be developed using the following standardized, matured and popularly used component models:

  • Enterprise JavaBeans (EJB)
  • Spring
  • OSGi
  • Service Component Architecture (SCA)

The objective is to give an introduction of these component models from the perspective of component principles and to understand the features provided by each of them. This article does not delve much into the details of the component models.

Enterprise JavaBeans Component Model
Enterprise JavaBeans (EJB) is a component model that is significant part of the Java Platform, Enterprise Edition. This is a standard from the JCP (Java Community Process) for representing business components in an n-tier enterprise application. Enterprise JavaBeans are distributed business components that contain the business logic of the enterprise application. The first release of the standard is EJB version 1.0. Much has changed in the EJB standard from its version 3.0. EJB has become truly lightweight, POJO based component model from EJB 3.0. This article will focus on the features of EJB with reference to EJB 3.0 specification. The classes and interfaces required for developing the components as per the model are packaged in EJB API.

An Enterprise JavaBeans component is a combination of an interface referred to as business interface and a class (POJO) containing the implementation for the interface referred to as EJB component.

Business Interface
The business interface of an EJB is a Plain Old Java Interface (POJI). The business interface for the enterprise bean contains the signature of the business methods. Business interface is the component interface which is exposed to the clients. The Enterprise JavaBeans model supports both local invocation and distributed invocation. So the component interface (business interface) can be used for local invocation and remote invocation.

EJB Component
The EJB component implements the business interface and contains the implementation of the methods in the business interface. The EJB component is used for the implementation of the business logic of the enterprise application and is available in the following types:

  • Stateless Session Bean
  • Stateful Session Bean
  • Singleton Session Bean
  • Message Driven Bean

Stateless session bean represents the business component which has no conversational state with the client. Stateless session bean components are not shared between clients. They are used for single method request/response communication between client and the component.

Stateful session bean is a business component that contains the conversational state for a single client. The conversational state of the component is maintained ONLY for a single client.

Singleton session bean is a new type of business component introduced from the recent specification of EJB. This is a business component which is shared between clients and supports concurrent access.

Message driven beans are business components that are designed to consume messages from messaging systems like Java Message Service (JMS). Message driven beans enable asynchronous communication and they get activated upon message arrival.

The types of beans are identified using metadata annotation in the source code or through the XML deployment descriptor. All the types of EJB components are POJO based and the following annotations are used:

  • @Stateless
  • @Stateful
  • @Singleton
  • @MessageDriven

EJB Container
Components are typically deployed into the container that provides runtime and services for them. The EJB component and the business interface are packaged into a JAR file and deployed in an EJB container. EJB containers manage the life cycle of the EJB components. Typically clients trying to access the component cannot create an object of the EJB directly, rather it gets a reference to the object created by the container. Containers are rich in features and provide all the services required for the components. The container acts as a registry having references of all components deployed in it.

Component Reference
Clients accessing EJB components (except Message Driven Beans) can be a remote client or local clients. A remote client is the one that accesses EJB components using remote protocol like RMI or IIOP. A local client is the one that accesses EJB components from the same JVM where the component is running.

Like any other component model, the EJB beans are not instantiated directly using the ‘new' operator. For accessing EJB components, dependency injection is used for getting a reference to the component deployed in the container. Dependency injection is based on the principles of ‘Inversion of Control.' The idea is to avoid the direct creation of objects using a ‘new' operator on the server-side Java. Dependency injection for EJB components is provided with the help of metadata annotation @EJB. The annotation @EJB specifies a reference to the business interface. When this annotation is used, the container will provide a reference of the component to the clients. A local client for EJB simply uses the @EJB to get a reference to the component.

A remote client for EJB, where injection is not possible has an alternate way of accessing EJB components. They have to use JNDI (Java Naming and Directory Interface) API for locating the components in the container with a string name usually called as JNDI name. The container will provide the reference of the component which will be used by the clients.

A Message Driven Bean can't be accessed by clients directly because they are asynchronous message listeners. This is a type of EJB component that is activated by the arrival of a message in a message destination. So clients cannot invoke any of the methods in the message driven bean.

Example to Understand EJB Component Model
The EJB component model discussed above can be understood with a simple example. Let us take the example of a Cart component used in online shopping. The Cart component has several methods like addItem, listItems, getTotalPrice and clearCart which helps to add items to the cart, list the items in the cart, get the total price of the components in the cart and clear the cart contents.

Note:  For benefit of those readers who read our earlier article on Componentizing Monolithic Application in Java, this is the same ShoppingCart component discussed in the article with little modifications. For simplicity, only a single component - Cart is used for demonstration purposes in this article.

Figure 1 - EJB Component Model - Cart Component Example

The business interface of the component in EJB model is a remote interface called ‘CartBeanRemote'.

package com.online.shopping;

import java.util.Collection;
import javax.ejb.Remote;

@Remote
public interface CartBeanRemote {
public void addItem(Product product, int quantity);
public Collection<Product> listItems();    
public double getTotalPrice();
public void clearCart();   
}

The business interface is implemented as a Stateful session EJB component ‘CartBean' because the component has to maintain the conversational state across method invocations for the client.

package com.online.shopping;

import java.util.Collection;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
import javax.ejb.Stateful;

@Stateful
public class CartBean implements CartBeanRemote {
Map<Product, Integer> items = new HashMap<Product, Integer>();      

@Override
public Collection<Product> listItems() {
HashSet<Product> contents = new HashSet<Product>();
Set<Product> set = items.keySet();
Iterator<Product> iterator = set.iterator();
while(iterator.hasNext()) {
contents.add(iterator.next());
}
return contents;
}  

@Override
public void addItem(Product product, int quantity) {
if(items.containsKey(product)) {
quantity +=items.get(product);
}
items.put(product, quantity);
}

@Override
public void clearCart() {
items.clear();
}

@Override
public double getTotalPrice() {
double totalPrice = 0;
for(Product product: items.keySet()) {
totalPrice+=product.getPrice()* items.get(product);           
}
return totalPrice;
}

}

The Stateful session bean is accessed by the client using a dependency injection @EJB annotation. The client need not create an object of the bean; rather the container will give the reference of the bean instance. Since this is a Stateful session bean, the bean maintains the conversational state of this client. The EJB component is stored internally in the container with a global JNDI name which by default is the name of the business interface-cartBeanRemote. Optionally the JNDI name can be specified as part of the @Stateful annotation. The container will look up internally for the bean with the global JNDI name (cartBeanRemote in this case) and a reference is injected into the business interface which is used by the client. The client is as simple as shown below.

package shoppingcartclient;

import com.online.shopping.CartBeanRemote;
import com.online.shopping.Product;
import java.util.Collection;
import javax.ejb.EJB;

public class ClientApp {

@EJB
private static CartBeanRemote cartBeanRemote;

public static void main(String[] args) {      

Product product = new Product();
product.setName("OSGi");
product.setPrice(550.00);
cartBeanRemote.addItem(product, 10);

Product newProduct = new Product();
newProduct.setName("EJB");
newProduct.setPrice(500.00);
cartBeanRemote.addItem(newProduct, 20);

Collection<Product> productItems = cartBeanRemote.listItems();
for(Product items: productItems) {
System.out.println(items.getName()+"******"+ items.getPrice());             
}            

System.out.println("Total Price of Cart Items: "+cartBeanRemote.getTotalPrice());

cartBeanRemote.clearCart();  

}
}

An alternative to the dependency injection as mentioned earlier, the JNDI API can be used to locate the business interface and the bean can be accessed using that. This is how the standardized EJB component Model simplifies the development, deployment and accessing of the components which is really a complex task without the model.

Spring Component Model
Spring is the most popular open source framework for building end-to-end enterprise applications in Java. Spring brings in greatest benefits like lightweight and modularity. This is achieved with the help of componentization of the framework. The Spring framework was initially written by Rod Johnson and was first released in the year June 2003. Spring components are POJO based and the benefit here is that the Spring components do not need heavyweight containers, only lightweight web containers (Servlet Containers...) are sufficient.

Spring is popular because of its support for Inversion of Control (IoC) features in the form of a Dependency Injection. As discussed earlier, dependency injection is the simplest form of representation of dependency between two classes without creating an object of the class using ‘new' operator. Dependency injection is the heart of the Spring framework. Apart from dependency injection, Spring framework provides support for AOP (Aspect Oriented Programming) as well. Spring framework provides the required APIs for development and deployment of the components.

Spring is slightly different component model from others in the fact that there is no concept of interface available directly to expose component methods. The component itself is used directly, without violating the component principles. Spring framework comprises of Spring Beans (the ‘Component') which is a POJO which is deployed and instantiated in a container called Spring Container which instantiates the bean components using a configuration file -XML file.

Spring Container
The Spring container is the core of the Spring framework. The container takes the responsibility of creating objects, configuring properties of objects, wiring them together and completely managing the life cycle of objects from its creation till destruction. The container completely depends on the configuration file which is XML file to perform any operations on the object.

Spring Container is built on the principles of IoC. The container uses dependency injection to manage the components deployed in them. The components are referred as Spring beans. The Spring container is of two types:

  • Spring BeanFactory Container
  • Spring ApplicationContext Container

The Spring BeanFactory container is the simplest container, an implementation of the Factory design pattern that provides the basic support for dependency injection and is defined by an interface called ‘BeanFactory' interface in the Spring API. Spring ApplicationContext container is an enhanced one which includes all the functionality provided by the BeanFactory container and provides additional features required for enterprise functionality. Hence for simple, lightweight applications, BeanFactory container is used whereas ApplicationContext container is the most preferred one.

The ApplicationContext container is advanced and is used for loading the bean definitions from the configuration file. This container provides several ways to load the configuration file. It allows loading XML file from a file system through FileSystemXmlApplicationContext, from the CLASSPATH using ClassPathXmlApplicationContext and from a web application through WebXmlApplicationContext. These contexts are crucial in instantiation of a bean.

Spring Beans
Spring Beans are the components that contain the business logic in the Spring framework. They are developed and deployed in the spring container which manages the life cycle of the beans. The instantiation of beans is managed by the container with the help of configuration file. Spring Beans are POJOs and are categorized into two types only at the time of instantiation:

  • Singleton
  • Prototype

If Singleton, only one single instance of the bean is created per Spring container. The single instance is cached and used for subsequent requests. If Prototype, instances can be created in any number based on the requests. By default, the spring bean is Singleton in nature. The type of the bean to be instantiated is decided by the entry in the configuration XML file.

Spring Configuration
Spring configuration is an XML file that is popularly known as a Bean Configuration file. This configuration file can have any name, but is usually referred to as ‘Beans.xml' and is critical in managing bean instances. Spring container loads the XML file and manages the beans referred in the file. Actually Spring provides three ways of configuration as mentioned below:

  • XML-based configuration file
  • Annotation based configuration
  • Java-based configuration

However the XML-based configuration file is commonly used. The XML file contains the configuration metadata that is used by the container for creating a bean instance, managing bean's lifecycle methods and bean's dependencies. Some of the important metadata that goes as part of the configuration file are listed below:

  • id - Id for the bean
  • class - Specified the bean class
  • name - Id for the bean by a name
  • scope - Scope of the bean objects - singleton, prototype, request, session
  • lazy-init - Bean will be initialized only during the first request
  • init-method - Method invoked after initialization of the bean
  • destroy-method - Method invoked before the destruction of the bean instance
  • constructor-arg - Used for injecting dependencies
  • properties - Used for injecting dependencies
  • autowire - Used for injecting dependencies

Example to Understand Spring Component Model
The Spring Component model can be understood with the same shopping Cart example discussed in the EJB component model.

Figure 2 - Spring Component Model - Cart Component Example

The CartBean is a POJO with the same methods discussed earlier. The spring bean need not implement any interfaces.

package com.online.shopping;

import java.util.Collection;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;

public class CartBean {
Map<Product, Integer> items = new HashMap<Product, Integer>();

public Collection<Product> listItems() {       
return items.keySet();
}

public void addItem(Product product, int quantity) {
if (items.containsKey(product)) {
quantity += items.get(product);
}
items.put(product, quantity);
}

public void clearCart() {
items.clear();
}

public double getTotalPrice() {
double totalPrice = 0;
for (Product product : items.keySet()) {
totalPrice += product.getPrice() * items.get(product);
}
return totalPrice;
}
}

The configuration file which is an XML file for the CartBean is referred as ‘Beans.xml'.  The XML file is placed under the source folder of the project. As mentioned earlier, the XML file is used for uniquely identifying beans and creation of objects. When the Spring application is loaded in the memory, the XML file is read first and the container uses this configuration file to create all the required beans and assigns id as per the tags present the configuration file. The XML file used in this example is mentioned below. The ‘CartBean' is assigned a unique id ‘cartBean'. Every bean is loaded and identified using the <bean> tag in the XML file and this tag can have child tags like <property>.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd">

<bean id="cartBean" class="com.online.shopping.CartBean" />

</beans>

To access the CartBean, the id of the bean and the context should be available for the client programs. First, the client tries to create an application context appropriately (File or ClassPath or Web). In this example, the client uses ClassPathXmlApplicationContext API that helps in loading the ‘Beans.xml' from the CLASSPATH (the XML file must be available in the CLASSPATH) and based on the information available in the configuration file, the container takes the responsibility of creating and initializing the beans, cartBean in this case.  The context plays an important role to get the reference of the bean since there is no interface. The bean reference is obtained using getBean() method of the context object.

package com.shopping.client;

import java.util.Collection;

import org.springframework.context.ApplicationContext;
import org.springframework.context.support.ClassPathXmlApplicationContext;

import com.online.shopping.CartBean;
import com.online.shopping.Product;

public class ClientApp {

/**
* @param args
*/
public static void main(String[] args) {
ApplicationContext context = new ClassPathXmlApplicationContext("Beans.xml");
CartBean cartBean = (CartBean) context.getBean("cartBean");

Product product = new Product();
product.setName("OSGi");
product.setPrice(550.00);
cartBean.addItem(product, 10);

Product newProduct = new Product();
newProduct.setName("Spring");
newProduct.setPrice(550.00);
cartBean.addItem(newProduct, 10);

Collection<Product> productItems = cartBean.listItems();
for(Product items: productItems) {
System.out.println(items.getName()+"******"+ items.getPrice());             
}            

System.out.println("Total Price of Cart Items: "+cartBean.getTotalPrice());

cartBean.clearCart();
}

}

Thus, Spring framework provides a simplified way to create components with the help of Spring factory, configuration XML file and the Spring container. Developing components has really become easy with the help of the Spring framework.

More Stories By Piram Manickam

Piram Manickam works at Infosys Limited. He would like to acknowledge and thank Sangeetha S, a beloved colleague and friend, for her invaluable contributions in this work.

More Stories By Subrahmanya SV

Subrahmanya SV works at Infosys Limited. He would like to acknowledge and thank Sangeetha S, a beloved colleague and friend, for her invaluable contributions in this work.

More Stories By S Sangeetha

S Sangeetha is a Senior Technical Architect at the E-Commerce Research Labs at Infosys Limited. She has over 15 years of experience in architecture, design and development of enterprise Java applications. She is also involved in enhancing the technical skills of Architects at Infosys. She has co-authored a book on ‘J2EE Architecture’ and also has written numerous articles on Java for various online Java forums like JavaWorld, java.net, DevX.com and internet.com. She can be reached at [email protected]

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
SYS-CON Events announced today that IceWarp will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. IceWarp, the leader of cloud and on-premise messaging, delivers secured email, chat, documents, conferencing and collaboration to today's mobile workforce, all in one unified interface
WebRTC has had a real tough three or four years, and so have those working with it. Only a few short years ago, the development world were excited about WebRTC and proclaiming how awesome it was. You might have played with the technology a couple of years ago, only to find the extra infrastructure requirements were painful to implement and poorly documented. This probably left a bitter taste in your mouth, especially when things went wrong.
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome,” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
While many app developers are comfortable building apps for the smartphone, there is a whole new world out there. In his session at @ThingsExpo, Narayan Sainaney, Co-founder and CTO of Mojio, will discuss how the business case for connected car apps is growing and, with open platform companies having already done the heavy lifting, there really is no barrier to entry.
As more intelligent IoT applications shift into gear, they’re merging into the ever-increasing traffic flow of the Internet. It won’t be long before we experience bottlenecks, as IoT traffic peaks during rush hours. Organizations that are unprepared will find themselves by the side of the road unable to cross back into the fast lane. As billions of new devices begin to communicate and exchange data – will your infrastructure be scalable enough to handle this new interconnected world?
SYS-CON Events announced today that Micron Technology, Inc., a global leader in advanced semiconductor systems, will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Micron’s broad portfolio of high-performance memory technologies – including DRAM, NAND and NOR Flash – is the basis for solid state drives, modules, multichip packages and other system solutions. Backed by more than 35 years of technology leadership, Micron's memory solutions enable the world's most innovative computing, consumer,...
SYS-CON Events announced today that Pythian, a global IT services company specializing in helping companies leverage disruptive technologies to optimize revenue-generating systems, has been named “Bronze Sponsor” of SYS-CON's 17th Cloud Expo, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Founded in 1997, Pythian is a global IT services company that helps companies compete by adopting disruptive technologies such as cloud, Big Data, advanced analytics, and DevOps to advance innovation and increase agility. Specializing in designing, imple...
SYS-CON Events announced today that HPM Networks will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. For 20 years, HPM Networks has been integrating technology solutions that solve complex business challenges. HPM Networks has designed solutions for both SMB and enterprise customers throughout the San Francisco Bay Area.
Consumer IoT applications provide data about the user that just doesn’t exist in traditional PC or mobile web applications. This rich data, or “context,” enables the highly personalized consumer experiences that characterize many consumer IoT apps. This same data is also providing brands with unprecedented insight into how their connected products are being used, while, at the same time, powering highly targeted engagement and marketing opportunities. In his session at @ThingsExpo, Nathan Treloar, President and COO of Bebaio, will explore examples of brands transforming their businesses by t...
With the proliferation of connected devices underpinning new Internet of Things systems, Brandon Schulz, Director of Luxoft IoT – Retail, will be looking at the transformation of the retail customer experience in brick and mortar stores in his session at @ThingsExpo. Questions he will address include: Will beacons drop to the wayside like QR codes, or be a proximity-based profit driver? How will the customer experience change in stores of all types when everything can be instrumented and analyzed? As an area of investment, how might a retail company move towards an innovation methodolo...
Through WebRTC, audio and video communications are being embedded more easily than ever into applications, helping carriers, enterprises and independent software vendors deliver greater functionality to their end users. With today’s business world increasingly focused on outcomes, users’ growing calls for ease of use, and businesses craving smarter, tighter integration, what’s the next step in delivering a richer, more immersive experience? That richer, more fully integrated experience comes about through a Communications Platform as a Service which allows for messaging, screen sharing, video...
The Internet of Things (IoT) is about the digitization of physical assets including sensors, devices, machines, gateways, and the network. It creates possibilities for significant value creation and new revenue generating business models via data democratization and ubiquitous analytics across IoT networks. The explosion of data in all forms in IoT requires a more robust and broader lens in order to enable smarter timely actions and better outcomes. Business operations become the key driver of IoT applications and projects. Business operations, IT, and data scientists need advanced analytics t...
A producer of the first smartphones and tablets, presenter Lee M. Williams will talk about how he is now applying his experience in mobile technology to the design and development of the next generation of Environmental and Sustainability Services at ETwater. In his session at @ThingsExpo, Lee Williams, COO of ETwater, will talk about how he is now applying his experience in mobile technology to the design and development of the next generation of Environmental and Sustainability Services at ETwater.
As more and more data is generated from a variety of connected devices, the need to get insights from this data and predict future behavior and trends is increasingly essential for businesses. Real-time stream processing is needed in a variety of different industries such as Manufacturing, Oil and Gas, Automobile, Finance, Online Retail, Smart Grids, and Healthcare. Azure Stream Analytics is a fully managed distributed stream computation service that provides low latency, scalable processing of streaming data in the cloud with an enterprise grade SLA. It features built-in integration with Azur...
Akana has announced the availability of the new Akana Healthcare Solution. The API-driven solution helps healthcare organizations accelerate their transition to being secure, digitally interoperable businesses. It leverages the Health Level Seven International Fast Healthcare Interoperability Resources (HL7 FHIR) standard to enable broader business use of medical data. Akana developed the Healthcare Solution in response to healthcare businesses that want to increase electronic, multi-device access to health records while reducing operating costs and complying with government regulations.
For IoT to grow as quickly as analyst firms’ project, a lot is going to fall on developers to quickly bring applications to market. But the lack of a standard development platform threatens to slow growth and make application development more time consuming and costly, much like we’ve seen in the mobile space. In his session at @ThingsExpo, Mike Weiner, Product Manager of the Omega DevCloud with KORE Telematics Inc., discussed the evolving requirements for developers as IoT matures and conducted a live demonstration of how quickly application development can happen when the need to comply wit...
The Internet of Everything (IoE) brings together people, process, data and things to make networked connections more relevant and valuable than ever before – transforming information into knowledge and knowledge into wisdom. IoE creates new capabilities, richer experiences, and unprecedented opportunities to improve business and government operations, decision making and mission support capabilities.
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at @ThingsExpo, James Kirkland, Red Hat's Chief Architect for the Internet of Things and Intelligent Systems, described how to revolutionize your archit...
MuleSoft has announced the findings of its 2015 Connectivity Benchmark Report on the adoption and business impact of APIs. The findings suggest traditional businesses are quickly evolving into "composable enterprises" built out of hundreds of connected software services, applications and devices. Most are embracing the Internet of Things (IoT) and microservices technologies like Docker. A majority are integrating wearables, like smart watches, and more than half plan to generate revenue with APIs within the next year.
Growth hacking is common for startups to make unheard-of progress in building their business. Career Hacks can help Geek Girls and those who support them (yes, that's you too, Dad!) to excel in this typically male-dominated world. Get ready to learn the facts: Is there a bias against women in the tech / developer communities? Why are women 50% of the workforce, but hold only 24% of the STEM or IT positions? Some beginnings of what to do about it! In her Opening Keynote at 16th Cloud Expo, Sandy Carter, IBM General Manager Cloud Ecosystem and Developers, and a Social Business Evangelist, d...