Welcome!

Java IoT Authors: Liz McMillan, Craig Lowell, Carmen Gonzalez, Elizabeth White, Pat Romanski

Blog Feed Post

Remote Controlling a Car over the Web. Ingredients: Smartphone, WebSocket, and Raspberry Pi.

At Kaazing, we have been experimenting with using a smartphone as a remote control for quite some time now. Those familiar with our demos may have seen our Zing-Pong demo (which is a “Pong”-style game using smartphones to control the paddles over WebSocket) or our Racer demo (which is a 3D Formula One car rendered in WebGL as a Chrome Experiment, and remotely controlled with a smartphone). These demos, along with the other demos we’ve created with Kaazing’s platform, use no plug-ins. You simply point a browser on your computer to the address of the object you want to control (for example, the gorgeous Formula One car rendered in WebGL) and a browser from your smartphone to the address of the remote control (an ID we generate for you). Once connected, you just…go!

A couple of our Visionary Zingers, Prashant Khanal and David Witherspoon, then experimented with communicating with a Raspberry Pi using WebSocket–or, more specifically, using Kaazing’s JMS-over-WebSocket Gateway to tell Raspberry Pi to turn on and off a lightbulb. When the lightbulb turned on in this experiment, another lightbulb turned on: could we in fact turn a remote, radio-controlled car into a remote, WebSocket-controlled car? By controlling the car over the Web, could we control the car from another room? From another continent?

The Racer Demo

Let’s first take a closer look at the Racer demo. The Racer demo uses the reflector pattern: where we connect devices through a WebSocket server, thus simulating peer-to-peer connectivity, a very easy-to-achieve task using pub/sub. When we developed the Racer demo, we walked through the steps to build it in The Simplest Way to Use Your Smartphone as a Game Controller: A WebSocket Race Car Demo. By examining how to use pub/sub concepts to control a virtual car, it’s not so farfetched to consider doing the same with a radio-controlled car.

The Goal

After working with the Racer demo, we knew what we wanted to achieve: controlling a “real” car (or at least a good-sized monster truck model) with a simple web app on a smartphone. Something like this, for example:

IMG_6014

And something that might move like this:

In just a few hours of hacking and experimenting, we turned this radio-controlled car into a WebSocket-controlled car. Don’t worry, no actual cars (or bunnies) were harmed in the making of this demo, as you’ll see as we walk through the hardware and software we used.

Ingredients: The Hardware

  • One RC car. We ended up using a black F150. The bigger the car, the easier it is to connect, position, and hide the building blocks. One thing to pay attention to is that the car you’re about to buy has to have two simple motors, one that drives the vehicle forward/backward, and another one that steers the car: front wheels left/right. The first thing you’ll get rid of is the radio control, so don’t worry about that too much.
  • One Raspberry Pi, model B. This piece of hardware is incredible. Runs Linux (and Java), has 512MB RAM, an Ethernet port, 2 USB ports (for keyboard, mouse, WiFi), takes an SD card, has an HDMI out, and has a handful of GPIO (General Purpose Input/Output) pins to drive external devices, like lights, motors, and alike.
  • One small breadboard. This simplifies connecting the building blocks.
  • Set of male to male and male to female jumper leads.
  • L298N Board: It is used to control the car motors. The car is equipped with two motors – one for steering and the other to drive wheels. Each motor is controlled  through two GPIO pins.
  • A couple of LEDs – optional. This RC car model didn’t come with any lights, but who has seen a serious RC car without lights – so we equipped ours with remote controllable LEDs.
  • One smartphone (can be substituted by a tablet, or any Web browser, really). Using a touch-based device makes the controlling more natural, but you can use any laptop/desktop browser with mouse/trackpad as well.
  • Battery. Anker Astro 5600 mAh external battery pack powering the Raspberry Pi and connected circuits: LEDs and relays.

The circuit diagram regarding the wiring among the Raspberry Pi GPIO pins, L298N board and the car battery can be found here. The pin numbers specified for the Raspberry Pi in the circuit diagram refers to the physical pin location.

Ingredients: The Software

  • WebSocket Server. We used Kaazing’s high performance enterprise grade WebSocket Gateway – JMS Edition. The JMS Edition provides an easy-to-use pub/sub abstraction, along with support for multiple WebSocket client technologies (of which we used the JavaScript and Java clients in the project). The WebSocket Gateway ships with Apache ActiveMQ, an open source message broker.
  • WebSocket JavaScript client code. The Kaazing JavaScript client code runs in the browser on the smartphone (or any other web browser), playing the role of the remote control. The user’s actions trigger events on the remote control and result in messages being sent to the WebSocket server.
  • WebSocket Java client code. The Kaazing Java client runs on the Raspberry Pi, receiving messages from the WebSocket server, and instructing the Raspberry Pi GPIO pins to control the car.  Control of the GPIO pins is achieved through the Pi4J Library.

Reviewing the Hardware

We decided to hide all the electronics in the body of the car, but wanted to have the Raspberry Pi accessible and more importantly, visible. It’s sitting on the truck’s plateau, lightly taped to it, so it doesn’t fall off as the truck accelerates and comes to sudden stops (read: bumps into things).

IMG_6018

On the right you can see the WiFi plugged into the top USB port (blue LED). On the left, you see the blue SD card. The GPIO ports are on the top left, connected to drive the two motors and the lights of the truck. The Raspberry Pi is powered through a micro USB port on the bottom left, leveraging a smartphone quick charger battery.

IMG_6020Under the “hood”, you can see the relay, and the breadboard connecting to the Pi, and the motors of the truck, as well as the front LEDs.

Reviewing the Software

To enable the Raspberry Pi to receive WebSocket messages from the browser client, we had to write some logic that runs on the Pi.

Architecture

The two clients, the smartphone remote control, and the code running on the Raspberry Pi, communicate with each other via WebSocket. In addition to JavaScript clients, Kaazing supports Java, .NET, and Flash/Flex clients. We chose the Java client for the Pi. The communication between these clients is seamless. The back-end message broker, which provides the messaging services is Apache ActiveMQ, but could be another JMS message broker like TIBCO’s, Informatica’s, or IBM’s, as well.

PiArchitecture

JavaScript Remote Control Code on the Smartphone

Since we plan to use this demo at trade shows, we wanted to make sure that we have a certain level of control over who controls the car and when. Therefore, we use a “secret” key that the remote control has to know to control the car. This key is sent to the code running on the Pi via a secured admin topic. Every message coming from the smartphone has to contain the same key. If it doesn’t, the message is thrown away.

The remote control client on the smartphone first asks for the key that identifies who can control the car.

IMG_6042

Then, the HTML5 remote control code, which runs on the smartphone, first establishes a connection to the WebSocket server. It creates a JMS topic, and a producer (or publisher) for the topic. When done, the client is ready to start sending messages through the WebSocket gateway to the Java code running on the Pi. Every message contains the previously specified key as well, as a custom JMS message property.

The images rendered for the remote control UI in the browser have JavaScript event listeners defined. The listeners are invoked both when the images are touched (touchstart), as well as when the images as released (touchend). The JavaScript client code sends messages as frequently as it can while one or more buttons are pressed, and one message as a control icon is let go.

IMG_6041

If you want to learn more and understand the JavaScript JMS APIs, try out the Step-by-Step Tutorial of Building a Simple Peer-to-Peer WebSocket Application tutorial or our API documentation.

Java Code Running on the Raspberry Pi

We chose to program the Raspberry Pi using Java.  Instructions to install Java on the Raspberry Pi can be found here.  The Java code on the raspberry requires both the JMS Kaazing Websocket Library to receive messages from the client, and the Pi4J library to interact with the car through the Rasbperry Pi’s GPIO .

The code is split into two main classes, CommandReceiver and Car.  CommandReceiver is responsible for connecting to the Kaazing JMS Gateway and listening to both on the command and the admin topic.  When admin messages are received the CommandReceiver will record which user has valid access to control the car.  When a command message is received, its properties will be checked to see if it is the current user in control of the car. If so, the message will be parsed and read, resulting in a corresponding method being called on the Car class.

The Car class is an abstraction of everything the car may do.  It has methods such as Steering, Thrust, and Lights that are called with Command parameters such as ON, OFF, LEFT, and RIGHT. When called, the GPIO inputs corresponding to each method and are switched on or off, thereby resulting on the motors of the car moving forward, backwards, or steering left or right.

To check out or download the full source code visit KaazingPi on Github.

The Result

Well, we cheated and already showed the video of the result at the beginning. But, if you want to see it in person, come see us at one of our upcoming events:


Read the original blog entry...

More Stories By Kaazing Blog

Kaazing is helping define the future of the event-driven enterprise by accelerating the Web for the Internet of Things.

@ThingsExpo Stories
Information technology is an industry that has always experienced change, and the dramatic change sweeping across the industry today could not be truthfully described as the first time we've seen such widespread change impacting customer investments. However, the rate of the change, and the potential outcomes from today's digital transformation has the distinct potential to separate the industry into two camps: Organizations that see the change coming, embrace it, and successful leverage it; and...
Everyone knows that truly innovative companies learn as they go along, pushing boundaries in response to market changes and demands. What's more of a mystery is how to balance innovation on a fresh platform built from scratch with the legacy tech stack, product suite and customers that continue to serve as the business' foundation. In his General Session at 19th Cloud Expo, Michael Chambliss, Head of Engineering at ReadyTalk, discussed why and how ReadyTalk diverted from healthy revenue and mor...
Extracting business value from Internet of Things (IoT) data doesn’t happen overnight. There are several requirements that must be satisfied, including IoT device enablement, data analysis, real-time detection of complex events and automated orchestration of actions. Unfortunately, too many companies fall short in achieving their business goals by implementing incomplete solutions or not focusing on tangible use cases. In his general session at @ThingsExpo, Dave McCarthy, Director of Products...
20th Cloud Expo, taking place June 6-8, 2017, at the Javits Center in New York City, NY, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy.
You have great SaaS business app ideas. You want to turn your idea quickly into a functional and engaging proof of concept. You need to be able to modify it to meet customers' needs, and you need to deliver a complete and secure SaaS application. How could you achieve all the above and yet avoid unforeseen IT requirements that add unnecessary cost and complexity? You also want your app to be responsive in any device at any time. In his session at 19th Cloud Expo, Mark Allen, General Manager of...
The 20th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held June 6-8, 2017, at the Javits Center in New York City, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Containers, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportunity. Submit your speaking proposal ...
DevOps is being widely accepted (if not fully adopted) as essential in enterprise IT. But as Enterprise DevOps gains maturity, expands scope, and increases velocity, the need for data-driven decisions across teams becomes more acute. DevOps teams in any modern business must wrangle the ‘digital exhaust’ from the delivery toolchain, "pervasive" and "cognitive" computing, APIs and services, mobile devices and applications, the Internet of Things, and now even blockchain. In this power panel at @...
Major trends and emerging technologies – from virtual reality and IoT, to Big Data and algorithms – are helping organizations innovate in the digital era. However, to create real business value, IT must think beyond the ‘what’ of digital transformation to the ‘how’ to harness emerging trends, innovation and disruption. Architecture is the key that underpins and ties all these efforts together. In the digital age, it’s important to invest in architecture, extend the enterprise footprint to the cl...
Bert Loomis was a visionary. This general session will highlight how Bert Loomis and people like him inspire us to build great things with small inventions. In their general session at 19th Cloud Expo, Harold Hannon, Architect at IBM Bluemix, and Michael O'Neill, Strategic Business Development at Nvidia, discussed the accelerating pace of AI development and how IBM Cloud and NVIDIA are partnering to bring AI capabilities to "every day," on-demand. They also reviewed two "free infrastructure" pr...
Whether your IoT service is connecting cars, homes, appliances, wearable, cameras or other devices, one question hangs in the balance – how do you actually make money from this service? The ability to turn your IoT service into profit requires the ability to create a monetization strategy that is flexible, scalable and working for you in real-time. It must be a transparent, smoothly implemented strategy that all stakeholders – from customers to the board – will be able to understand and comprehe...
Businesses and business units of all sizes can benefit from cloud computing, but many don't want the cost, performance and security concerns of public cloud nor the complexity of building their own private clouds. Today, some cloud vendors are using artificial intelligence (AI) to simplify cloud deployment and management. In his session at 20th Cloud Expo, Ajay Gulati, Co-founder and CEO of ZeroStack, will discuss how AI can simplify cloud operations. He will cover the following topics: why clou...
"Dice has been around for the last 20 years. We have been helping tech professionals find new jobs and career opportunities," explained Manish Dixit, VP of Product and Engineering at Dice, in this SYS-CON.tv interview at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform and how we integrate our thinking to solve complicated problems. In his session at 19th Cloud Expo, Craig Sproule, CEO of Metavine, demonstrated how to move beyond today's coding paradigm and sh...
More and more brands have jumped on the IoT bandwagon. We have an excess of wearables – activity trackers, smartwatches, smart glasses and sneakers, and more that track seemingly endless datapoints. However, most consumers have no idea what “IoT” means. Creating more wearables that track data shouldn't be the aim of brands; delivering meaningful, tangible relevance to their users should be. We're in a period in which the IoT pendulum is still swinging. Initially, it swung toward "smart for smar...
We are always online. We access our data, our finances, work, and various services on the Internet. But we live in a congested world of information in which the roads were built two decades ago. The quest for better, faster Internet routing has been around for a decade, but nobody solved this problem. We’ve seen band-aid approaches like CDNs that attack a niche's slice of static content part of the Internet, but that’s it. It does not address the dynamic services-based Internet of today. It does...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life sett...
The WebRTC Summit New York, to be held June 6-8, 2017, at the Javits Center in New York City, NY, announces that its Call for Papers is now open. Topics include all aspects of improving IT delivery by eliminating waste through automated business models leveraging cloud technologies. WebRTC Summit is co-located with 20th International Cloud Expo and @ThingsExpo. WebRTC is the future of browser-to-browser communications, and continues to make inroads into the traditional, difficult, plug-in web ...
20th Cloud Expo, taking place June 6-8, 2017, at the Javits Center in New York City, NY, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy.
WebRTC is the future of browser-to-browser communications, and continues to make inroads into the traditional, difficult, plug-in web communications world. The 6th WebRTC Summit continues our tradition of delivering the latest and greatest presentations within the world of WebRTC. Topics include voice calling, video chat, P2P file sharing, and use cases that have already leveraged the power and convenience of WebRTC.
"We're a cybersecurity firm that specializes in engineering security solutions both at the software and hardware level. Security cannot be an after-the-fact afterthought, which is what it's become," stated Richard Blech, Chief Executive Officer at Secure Channels, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.