Welcome!

Java Authors: Liz McMillan, Carmen Gonzalez, Pat Romanski, Yeshim Deniz, Yakov Fain

Blog Feed Post

Remote Controlling a Car over the Web. Ingredients: Smartphone, WebSocket, and Raspberry Pi.

At Kaazing, we have been experimenting with using a smartphone as a remote control for quite some time now. Those familiar with our demos may have seen our Zing-Pong demo (which is a “Pong”-style game using smartphones to control the paddles over WebSocket) or our Racer demo (which is a 3D Formula One car rendered in WebGL as a Chrome Experiment, and remotely controlled with a smartphone). These demos, along with the other demos we’ve created with Kaazing’s platform, use no plug-ins. You simply point a browser on your computer to the address of the object you want to control (for example, the gorgeous Formula One car rendered in WebGL) and a browser from your smartphone to the address of the remote control (an ID we generate for you). Once connected, you just…go!

A couple of our Visionary Zingers, Prashant Khanal and David Witherspoon, then experimented with communicating with a Raspberry Pi using WebSocket–or, more specifically, using Kaazing’s JMS-over-WebSocket Gateway to tell Raspberry Pi to turn on and off a lightbulb. When the lightbulb turned on in this experiment, another lightbulb turned on: could we in fact turn a remote, radio-controlled car into a remote, WebSocket-controlled car? By controlling the car over the Web, could we control the car from another room? From another continent?

The Racer Demo

Let’s first take a closer look at the Racer demo. The Racer demo uses the reflector pattern: where we connect devices through a WebSocket server, thus simulating peer-to-peer connectivity, a very easy-to-achieve task using pub/sub. When we developed the Racer demo, we walked through the steps to build it in The Simplest Way to Use Your Smartphone as a Game Controller: A WebSocket Race Car Demo. By examining how to use pub/sub concepts to control a virtual car, it’s not so farfetched to consider doing the same with a radio-controlled car.

The Goal

After working with the Racer demo, we knew what we wanted to achieve: controlling a “real” car (or at least a good-sized monster truck model) with a simple web app on a smartphone. Something like this, for example:

IMG_6014

And something that might move like this:

In just a few hours of hacking and experimenting, we turned this radio-controlled car into a WebSocket-controlled car. Don’t worry, no actual cars (or bunnies) were harmed in the making of this demo, as you’ll see as we walk through the hardware and software we used.

Ingredients: The Hardware

  • One RC car. We ended up using a black F150. The bigger the car, the easier it is to connect, position, and hide the building blocks. One thing to pay attention to is that the car you’re about to buy has to have two simple motors, one that drives the vehicle forward/backward, and another one that steers the car: front wheels left/right. The first thing you’ll get rid of is the radio control, so don’t worry about that too much.
  • One Raspberry Pi, model B. This piece of hardware is incredible. Runs Linux (and Java), has 512MB RAM, an Ethernet port, 2 USB ports (for keyboard, mouse, WiFi), takes an SD card, has an HDMI out, and has a handful of GPIO (General Purpose Input/Output) pins to drive external devices, like lights, motors, and alike.
  • One small breadboard. This simplifies connecting the building blocks.
  • Set of male to male and male to female jumper leads.
  • L298N Board: It is used to control the car motors. The car is equipped with two motors – one for steering and the other to drive wheels. Each motor is controlled  through two GPIO pins.
  • A couple of LEDs – optional. This RC car model didn’t come with any lights, but who has seen a serious RC car without lights – so we equipped ours with remote controllable LEDs.
  • One smartphone (can be substituted by a tablet, or any Web browser, really). Using a touch-based device makes the controlling more natural, but you can use any laptop/desktop browser with mouse/trackpad as well.
  • Battery. Anker Astro 5600 mAh external battery pack powering the Raspberry Pi and connected circuits: LEDs and relays.

The circuit diagram regarding the wiring among the Raspberry Pi GPIO pins, L298N board and the car battery can be found here. The pin numbers specified for the Raspberry Pi in the circuit diagram refers to the physical pin location.

Ingredients: The Software

  • WebSocket Server. We used Kaazing’s high performance enterprise grade WebSocket Gateway – JMS Edition. The JMS Edition provides an easy-to-use pub/sub abstraction, along with support for multiple WebSocket client technologies (of which we used the JavaScript and Java clients in the project). The WebSocket Gateway ships with Apache ActiveMQ, an open source message broker.
  • WebSocket JavaScript client code. The Kaazing JavaScript client code runs in the browser on the smartphone (or any other web browser), playing the role of the remote control. The user’s actions trigger events on the remote control and result in messages being sent to the WebSocket server.
  • WebSocket Java client code. The Kaazing Java client runs on the Raspberry Pi, receiving messages from the WebSocket server, and instructing the Raspberry Pi GPIO pins to control the car.  Control of the GPIO pins is achieved through the Pi4J Library.

Reviewing the Hardware

We decided to hide all the electronics in the body of the car, but wanted to have the Raspberry Pi accessible and more importantly, visible. It’s sitting on the truck’s plateau, lightly taped to it, so it doesn’t fall off as the truck accelerates and comes to sudden stops (read: bumps into things).

IMG_6018

On the right you can see the WiFi plugged into the top USB port (blue LED). On the left, you see the blue SD card. The GPIO ports are on the top left, connected to drive the two motors and the lights of the truck. The Raspberry Pi is powered through a micro USB port on the bottom left, leveraging a smartphone quick charger battery.

IMG_6020Under the “hood”, you can see the relay, and the breadboard connecting to the Pi, and the motors of the truck, as well as the front LEDs.

Reviewing the Software

To enable the Raspberry Pi to receive WebSocket messages from the browser client, we had to write some logic that runs on the Pi.

Architecture

The two clients, the smartphone remote control, and the code running on the Raspberry Pi, communicate with each other via WebSocket. In addition to JavaScript clients, Kaazing supports Java, .NET, and Flash/Flex clients. We chose the Java client for the Pi. The communication between these clients is seamless. The back-end message broker, which provides the messaging services is Apache ActiveMQ, but could be another JMS message broker like TIBCO’s, Informatica’s, or IBM’s, as well.

PiArchitecture

JavaScript Remote Control Code on the Smartphone

Since we plan to use this demo at trade shows, we wanted to make sure that we have a certain level of control over who controls the car and when. Therefore, we use a “secret” key that the remote control has to know to control the car. This key is sent to the code running on the Pi via a secured admin topic. Every message coming from the smartphone has to contain the same key. If it doesn’t, the message is thrown away.

The remote control client on the smartphone first asks for the key that identifies who can control the car.

IMG_6042

Then, the HTML5 remote control code, which runs on the smartphone, first establishes a connection to the WebSocket server. It creates a JMS topic, and a producer (or publisher) for the topic. When done, the client is ready to start sending messages through the WebSocket gateway to the Java code running on the Pi. Every message contains the previously specified key as well, as a custom JMS message property.

The images rendered for the remote control UI in the browser have JavaScript event listeners defined. The listeners are invoked both when the images are touched (touchstart), as well as when the images as released (touchend). The JavaScript client code sends messages as frequently as it can while one or more buttons are pressed, and one message as a control icon is let go.

IMG_6041

If you want to learn more and understand the JavaScript JMS APIs, try out the Step-by-Step Tutorial of Building a Simple Peer-to-Peer WebSocket Application tutorial or our API documentation.

Java Code Running on the Raspberry Pi

We chose to program the Raspberry Pi using Java.  Instructions to install Java on the Raspberry Pi can be found here.  The Java code on the raspberry requires both the JMS Kaazing Websocket Library to receive messages from the client, and the Pi4J library to interact with the car through the Rasbperry Pi’s GPIO .

The code is split into two main classes, CommandReceiver and Car.  CommandReceiver is responsible for connecting to the Kaazing JMS Gateway and listening to both on the command and the admin topic.  When admin messages are received the CommandReceiver will record which user has valid access to control the car.  When a command message is received, its properties will be checked to see if it is the current user in control of the car. If so, the message will be parsed and read, resulting in a corresponding method being called on the Car class.

The Car class is an abstraction of everything the car may do.  It has methods such as Steering, Thrust, and Lights that are called with Command parameters such as ON, OFF, LEFT, and RIGHT. When called, the GPIO inputs corresponding to each method and are switched on or off, thereby resulting on the motors of the car moving forward, backwards, or steering left or right.

To check out or download the full source code visit KaazingPi on Github.

The Result

Well, we cheated and already showed the video of the result at the beginning. But, if you want to see it in person, come see us at one of our upcoming events:


Read the original blog entry...

More Stories By Jonas Jacobi

Jonas has 21 years of experience leading the development of innovative technology products and services. Together with Kaazing’s Co-Founder & CTO John Fallows, he pioneered and championed the groundbreaking HTML5 WebSocket standard. Prior to co-founding Kaazing he served as VP of Product Management for Brane Corporation, a Silicon Valley startup dedicated to developing a market-leading enterprise platform for building model-driven apps. Before Brane, he spent 8+ years at Oracle where he served as a Java EE and open source Evangelist, and was Product Manager in the Oracle Application Server division for JavaServer Faces, Oracle ADF Faces, and Oracle ADF Faces Rich Client. He is a frequent speaker at international conferences on accelerating and scaling secure enterprise-grade WebComms (Web Communications).

@ThingsExpo Stories
SYS-CON Events announced today that Aria Systems, the recurring revenue expert, has been named "Bronze Sponsor" of SYS-CON's 15th International Cloud Expo®, which will take place on November 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Aria Systems helps leading businesses connect their customers with the products and services they love. Industry leaders like Pitney Bowes, Experian, AAA NCNU, VMware, HootSuite and many others choose Aria to power their recurring revenue business and deliver exceptional experiences to their customers.
The Internet of Things (IoT) is going to require a new way of thinking and of developing software for speed, security and innovation. This requires IT leaders to balance business as usual while anticipating for the next market and technology trends. Cloud provides the right IT asset portfolio to help today’s IT leaders manage the old and prepare for the new. Today the cloud conversation is evolving from private and public to hybrid. This session will provide use cases and insights to reinforce the value of the network in helping organizations to maximize their company’s cloud experience.

SUNNYVALE, Calif., Oct. 20, 2014 /PRNewswire/ -- Spansion Inc. (NYSE: CODE), a global leader in embedded systems, today added 96 new products to the Spansion® FM4 Family of flexible microcontrollers (MCUs). Based on the ARM® Cortex®-M4F core, the new MCUs boast a 200 MHz operating frequency and support a diverse set of on-chip peripherals for enhanced human machine interfaces (HMIs) and machine-to-machine (M2M) communications. The rich set of periphera...

The Internet of Things (IoT) is making everything it touches smarter – smart devices, smart cars and smart cities. And lucky us, we’re just beginning to reap the benefits as we work toward a networked society. However, this technology-driven innovation is impacting more than just individuals. The IoT has an environmental impact as well, which brings us to the theme of this month’s #IoTuesday Twitter chat. The ability to remove inefficiencies through connected objects is driving change throughout every sector, including waste management. BigBelly Solar, located just outside of Boston, is trans...
SYS-CON Events announced today that Matrix.org has been named “Silver Sponsor” of Internet of @ThingsExpo, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Matrix is an ambitious new open standard for open, distributed, real-time communication over IP. It defines a new approach for interoperable Instant Messaging and VoIP based on pragmatic HTTP APIs and WebRTC, and provides open source reference implementations to showcase and bootstrap the new standard. Our focus is on simplicity, security, and supporting the fullest feature set.
Predicted by Gartner to add $1.9 trillion to the global economy by 2020, the Internet of Everything (IoE) is based on the idea that devices, systems and services will connect in simple, transparent ways, enabling seamless interactions among devices across brands and sectors. As this vision unfolds, it is clear that no single company can accomplish the level of interoperability required to support the horizontal aspects of the IoE. The AllSeen Alliance, announced in December 2013, was formed with the goal to advance IoE adoption and innovation in the connected home, healthcare, education, aut...
SYS-CON Events announced today that Red Hat, the world's leading provider of open source solutions, will exhibit at Internet of @ThingsExpo, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Red Hat is the world's leading provider of open source software solutions, using a community-powered approach to reliable and high-performing cloud, Linux, middleware, storage and virtualization technologies. Red Hat also offers award-winning support, training, and consulting services. As the connective hub in a global network of enterprises, partners, a...
The only place to be June 9-11 is Cloud Expo & @ThingsExpo 2015 East at the Javits Center in New York City. Join us there as delegates from all over the world come to listen to and engage with speakers & sponsors from the leading Cloud Computing, IoT & Big Data companies. Cloud Expo & @ThingsExpo are the leading events covering the booming market of Cloud Computing, IoT & Big Data for the enterprise. Speakers from all over the world will be hand-picked for their ability to explore the economic strategies that utility/cloud computing provides. Whether public, private, or in a hybrid form, clo...
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation and integration; and visibility through intelligent business operations and big data.
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace.
Be Among the First 100 to Attend & Receive a Smart Beacon. The Physical Web is an open web project within the Chrome team at Google. Scott Jenson leads a team that is working to leverage the scalability and openness of the web to talk to smart devices. The Physical Web uses bluetooth low energy beacons to broadcast an URL wirelessly using an open protocol. Nearby devices can find all URLs in the room, rank them and let the user pick one from a list. Each device is, in effect, a gateway to a web page. This unlocks entirely new use cases so devices can offer tiny bits of information or simple i...
Things are being built upon cloud foundations to transform organizations. This CEO Power Panel at 15th Cloud Expo, moderated by Roger Strukhoff, Cloud Expo and @ThingsExpo conference chair, will address the big issues involving these technologies and, more important, the results they will achieve. How important are public, private, and hybrid cloud to the enterprise? How does one define Big Data? And how is the IoT tying all this together?
The Internet of Things (IoT) is going to require a new way of thinking and of developing software for speed, security and innovation. This requires IT leaders to balance business as usual while anticipating for the next market and technology trends. Cloud provides the right IT asset portfolio to help today’s IT leaders manage the old and prepare for the new. Today the cloud conversation is evolving from private and public to hybrid. This session will provide use cases and insights to reinforce the value of the network in helping organizations to maximize their company’s cloud experience.
TechCrunch reported that "Berlin-based relayr, maker of the WunderBar, an Internet of Things (IoT) hardware dev kit which resembles a chunky chocolate bar, has closed a $2.3 million seed round, from unnamed U.S. and Switzerland-based investors. The startup had previously raised a €250,000 friend and family round, and had been on track to close a €500,000 seed earlier this year — but received a higher funding offer from a different set of investors, which is the $2.3M round it’s reporting."
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. Over the summer Gartner released its much anticipated annual Hype Cycle report and the big news is that Internet of Things has now replaced Big Data as the most hyped technology. Indeed, we're hearing more and more about this fascinating new technological paradigm. Every other IT news item seems to be about IoT and its implications on the future of digital busines...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The Internet of Things needs an entirely new security model, or does it? Can we save some old and tested controls for the latest emerging and different technology environments? In his session at Internet of @ThingsExpo, Davi Ottenheimer, EMC Senior Director of Trust, will review hands-on lessons with IoT devices and reveal privacy options and a new risk balance you might not expect.
IoT is still a vague buzzword for many people. In his session at Internet of @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, will discuss the business value of IoT that goes far beyond the general public's perception that IoT is all about wearables and home consumer services. The presentation will also discuss how IoT is perceived by investors and how venture capitalist access this space. Other topics to discuss are barriers to success, what is new, what is old, and what the future may hold.
Swiss innovators dizmo Inc. launches its ground-breaking software, which turns any digital surface into an immersive platform. The dizmo platform seamlessly connects digital and physical objects in the home and at the workplace. Dizmo breaks down traditional boundaries between device, operating systems, apps and software, transforming the way users work, play and live. It supports orchestration and collaboration in an unparalleled way enabling any data to instantaneously be accessed on any surface, anywhere and made interactive. Dizmo brings fantasies as seen in Sci-fi movies such as Iro...