Welcome!

Java IoT Authors: Liz McMillan, Elizabeth White, Yeshim Deniz, Zakia Bouachraoui, Pat Romanski

News Feed Item

Dataguise Presents 10 Best Practices for Securing Sensitive Data in Hadoop

Guidance Aimed at Protecting Hadoop Deployments Against Data Exposure Risks

FREMONT, CA -- (Marketwired) -- 04/03/13 -- Dataguise (http://www.dataguise.com), a leading innovator of data security intelligence and protection solutions, today released ten security best practices for organizations considering or implementing Hadoop. By following these procedures to manage privacy risk, data management and security, professionals can prevent costly exposure of sensitive data, reduce their risk profile and better adhere to compliance mandates. With Hadoop security deployments among the Fortune 200, Dataguise has developed these practices and procedures from significant experience in securing these large and diverse environments.

The explosion in information technology tools and capabilities has enabled advanced analytics using Big Data. However, the benefits of this new technology area are often coupled with data privacy issues. In these large information repositories, personally identifiable information (PII), such as names, addresses and social security numbers may exist. Financial data such as credit card and account numbers might also be found in large volumes across these environments and pose serious concerns related to access. Through careful planning, testing, pre-production preparation and the appropriate use of technology, much of these concerns can be alleviated.

The following 10 Hadoop Security Best Practices provide valuable guidance throughout Hadoop project implementations, but are especially important in the early planning stages:

1. Start Early! Determine the data privacy protection strategy during the planning phase of a deployment, preferably before moving any data into Hadoop. This will prevent the possibility of damaging compliance exposure for the company and avoid unpredictability in the roll out schedule.
2. Identify what data elements are defined as sensitive within your organization. Consider company privacy policies, pertinent industry regulations and governmental regulations.
3. Discover whether sensitive data is embedded in the environment, assembled or will be assembled in Hadoop.
4. Determine the compliance exposure risk based on the information collected.
5. Determine whether business analytic needs require access to real data or if desensitized data can be used. Then, choose the right remediation technique (masking or encryption). If in doubt, remember that masking provides the most secure remediation while encryption provides the most flexibility, should future needs evolve.
6. Ensure the data protection solutions under consideration support both masking and encryption remediation techniques, especially if the goal is to keep both masked and unmasked versions of sensitive data in separate Hadoop directories.
7. Ensure the data protection technology used implements consistent masking across all data files (Joe becomes Dave in all files) to preserve the accuracy of data analysis across every data aggregation dimensions.
8. Determine whether a tailored protection for specific data sets is required and consider dividing Hadoop directories into smaller groups where security can be managed as a unit.
9. Ensure the selected encryption solution interoperates with the company's access control technology and that both allow users with different credentials to have the appropriate, selective access to data in the Hadoop cluster.
10. Ensure that when encryption is required, the proper technology (Java, Pig, etc.) is deployed to allow for seamless decryption and ensure expedited access to data.

By starting early and establishing processes that define sensitive data, detect that data in the Hadoop environment, analyze the risk exposure and assign the proper data protection using either masking or encryption, enterprises can remain confident their data is protected from unauthorized access. In following these guidelines, data management, security and compliance officers cognizant of the sensitive information in Hadoop can not only lower exposure risks, but increase performance for a greater return on Big Data initiatives.

"Thousands of firms are working on big data projects, from small startups to large enterprises. New technologies enable any company to collect, manage, and analyze incredibly large data sets. As these systems become more common, the repositories are increasingly likely to be stuffed with sensitive data," said Adrian Lane, Analyst and CTO, Securosis. "Only after companies find themselves reliant on Big Data do they ask how to secure it. Having a plan in place to secure these unique environments during the planning phase is essential."

"Enforcing security and compliance in Hadoop is not a simple matter and requires the right combination of people, processes and technology. The best practices presented here illuminate the important procedures required to maintain data privacy of sensitive data stored in Hadoop. As indicated above, it is critical that organizations place priority on protecting the data first to provide a strong line of defense against unlawful exposures before moving forward," said Manmeet Singh, CEO, Dataguise. "With significant experience in securing Fortune 200 environments, we encourage practitioners to consult with experts when data exposure and non-compliance is not an option. This is the value beyond software provided by Dataguise."

Built for enterprise deployments of Hadoop, DG for Hadoop™ helps evaluate exposure risks and enforces the most appropriate remediation to prevent unauthorized access to sensitive data. This protects organizations against severe financial penalties and the negative impacts to brand that can result from exposure. The solution allows the user to define and detect the data in a Hadoop installation that is sensitive in nature (credit card numbers, social security numbers, account numbers, personally identifiable information, etc.), analyze the company's risk from the exposure of that data and protect the information with masking or encryption so the data can be used safely.

Tweet this: @Dataguise Highlights 10 Best Practices for Securing Sensitive Data in Hadoop - http://bit.ly/9nKnZX

Follow Dataguise on Twitter at: http://twitter.com/dataguise

About Dataguise
Dataguise is the leading provider of data privacy protection and compliance intelligence for sensitive data assets stored in both Big Data and traditional repositories. Dataguise's comprehensive and centrally managed solutions allow companies to maintain a 360 degree view of their sensitive data, evaluate their compliance exposure risks, and enforce the most appropriate remediation policies, whether the data is stored on premises or in the cloud.

Agency Contact:
Joe Austin
The Ventana Group
(818) 332-6166
Email Contact

More Stories By Marketwired .

Copyright © 2009 Marketwired. All rights reserved. All the news releases provided by Marketwired are copyrighted. Any forms of copying other than an individual user's personal reference without express written permission is prohibited. Further distribution of these materials is strictly forbidden, including but not limited to, posting, emailing, faxing, archiving in a public database, redistributing via a computer network or in a printed form.

IoT & Smart Cities Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...