Click here to close now.

Welcome!

JAVA IoT Authors: Elizabeth White, Lori MacVittie, Liz McMillan, Pat Romanski, Kelly Murphy

Related Topics: JAVA IoT, Industrial IoT, Mobile IoT, Microservices Expo, IBM Cloud, Weblogic, IoT User Interface

JAVA IoT: Article

Component Models in Java | Part 2

OSGi Component Model

OSGi is the latest component model to join the bandwagon of component models, which provides a platform for component oriented development and assembly. OSGi framework is a standards based platform whose specifications are provided by the OSGi Alliance (www.osgi.org, formerly OSGi was referred as Open Services Gateway Initiative). OSGi Alliance is an industry backed nonprofit organization which was founded in March 1999. The OSGi specification has gone through many releases and the current major version in use is 4 and version 5 has been introduced recently.

The OSGi defines a dynamic module system for Java. This offers help for Java's modularity problems by providing better control to the code structure, manage the lifecycle of the code and a complete loosely coupled approach that is much needed for component-oriented development.

The OSGi specification consists of two parts:

  • OSGi Framework
  • OSGi Standard services

The OSGi framework is the OSGi runtime environment that provides all the functionality as per the specifications. Applications are deployed and executed in the OSGi framework. The OSGi framework provides an API for the development of components. There are a number of framework implementations and some of the popular ones are Eclipse Equinox, Apache Felix and Knoplerfish. OSGi standard services define reusable services that should be provided as part of the development platform implementation. There are three conceptual layers in OSGi framework:

  • Module layer - Responsible for packaging and sharing code
  • Lifecycle layer - Responsible for managing the lifecycle of deployed module during runtime
  • Service layer - Responsible for dynamic service publication, searching and binding

OSGi Bundle
An OSGi bundle is a deployment module in the form of a JAR file. A module in OSGi parlance is known as a bundle. Bundles contain class files and resource files, similar to the regular JAR file in Java, but in addition they contain manifest information that contains metadata about the bundle. Apart from the regular JAR file's manifest contents, a bundle's manifest file has OSGi specific information such as module name, version number, dependencies, etc., thus giving better modularity and easy maintainability. Bundles are more powerful than JAR files in enforcing module boundaries, because a bundle needs to explicitly define what portion of its internal code is externally visible. Similarly, a bundle must explicitly declare any external dependencies that it has with the code exposed by other bundles. A bundle must have a unique identity - Bundle Name and Version.

The OSGi framework matches the exports and imports of deployed bundles to dynamically wire the entire application. This process of bundle resolution ensures consistency among the different bundles in terms of versions and other constraints. An application in OSGi is nothing but a collection of bundles with explicitly defined dependencies. A bundle is deployed in OSGi framework once it is developed.

OSGi Service Registry
The OSGi Service registry promotes service oriented programming. The service registry provides service publication service discovery and service binding. The bundles deployed in the OSGi framework can leverage the service registry later for publishing and consuming services. A bundle providing a service publishes the service in the OSGi Service Registry. A service is defined by a Java Interface, which represents a conceptual contract between the provider and consumer. A potential consumer can use the registry to search for providers of a particular service. Once if finds a service provider, it can bind and use the service. Services layer in OSGi facilitates one more level of dynamism other than bundles. Just as bundles can be added and removed in a running application, the Services can appear and go dynamically in a runtime application.

OSGi Component
As discussed earlier, a bundle is the deployment unit in OSGi component model. A bundle is a JAR file that contains:

  • Class files
  • Resource files
  • Manifest file (with additional metadata)

The class files are typically the interface and the implementation which constitutes the component. The manifest will have additional metadata as shown below:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: com.demo.helloWorld

Bundle-SymbolicName: com.demo.helloWorld

Bundle-Version: 1.0.0.qualifier

Bundle-Activator: com.demo.Activator

Bundle-Vendor: PIRAM

Bundle-RequiredExecutionEnvironment: JavaSE-1.7

Import-Package: org.osgi.framework;version="1.3.0"

Bundle-ActivationPolicy: lazy

The OSGi Framework provides an inbuilt API called BundleActivator which helps the bundle to hook its own lifecycle management. The BundleActivator interface has two methods - start() and stop() which are invoked when the bundle is started and stopped respectively. Any bundle can implement this interface to check its own life cycle. The bundle could perform actions as specified in the start and stop methods of the Activator class. The use of bundle as a component for building application on the OSGi framework does not just depend on the bundle doing the work whenever it is started or stopped. The bundle needs to be able to expose certain functionality as provided interfaces and it needs to consume functionalities as per the require interfaces. Thus a collection of bundles made into an assembly should be able to work together to form a system. Generally the provided interface will be created as a separate bundle and the implementations can be wired dynamically by the OSGi runtime from the implementation bundles. There can be more than one implementation, the wiring happens depending on the runtime.

Example to understand OSGi Component Model
The OSGi component model can be understood with the same shopping Cart example discussed in the earlier models.

Figure 3: OSGi Component Model - Cart Component Example

The Cart application in this example is created with the following bundles for better modularity and maintainability.

  1. Interface Bundle (com.online.shopping)
  2. Implementation Bundle (CartImpl)
  3. Client Bundle (CartClient)

The Cart component is comprised of interface bundle and implementation bundle. The interface bundle (com.online.shopping) defines an interface ICart. This interface will be used by the implementation bundle to invoke the exposed services. The client bundle will use the interface for invoking the required services which gets bounded to the implementation bundle by the service registry.

Interface Bundle
The interface bundle contains the interface ICart for the Cart component and is defined as below:

package com.online.shopping;

import java.util.Collection;

public interface ICart {
public void addItem(Product product, int quantity);
public Collection<Product> listItems();    
public double getTotalPrice();
public void clearCart();
}

This bundle has ONLY the interface and its helper class and it exports the com.online.shopping package as shown in the manifest file below:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: CartIntf
Bundle-SymbolicName: CartIntf
Bundle-Version: 1.0.0.qualifier
Bundle-ActivationPolicy: lazy
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Import-Package: org.osgi.framework;version="1.3.0"
Export-Package: com.online.shopping

The structure of the bundle jar file is as below:

Figure 4: Structure of Interface Bundle

Implementation Bundle
ICart interface is implemented by the class CartImpl, whose code as demonstrated below:

package com.online.shopping.impl;

import java.util.Collection;
import java.util.HashMap;
import java.util.Map;

import com.online.shopping.ICart;
import com.online.shopping.Product;

public class CartImpl implements ICart {
Map<Product, Integer> items = new HashMap<Product, Integer>();      

@Override
public void addItem(Product product, int quantity) {
if(items.containsKey(product)) {
quantity +=items.get(product);
}
items.put(product, quantity);
}

@Override

public Collection<Product> listItems() {

return items.keySet();

}

@Override
public double getTotalPrice() {
double totalPrice = 0;
for(Product product: items.keySet()) {
totalPrice+=product.getPrice()* items.get(product);           
}
return totalPrice;
}

@Override
public void clearCart() {
items.clear();
}

}

The CartImpl is the class in the implementation bundle that implements the ICart interface and provides the ICart service implementation. In the implementation bundle, the interface com.online.shopping.ICart is not added to the CLASSPATH, but imported by the OSGi framework. This bundle imports the interface bundle as explained in the MANIFEST.MF below:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: CartImpl
Bundle-SymbolicName: CartImpl
Bundle-Version: 1.0.0.qualifier
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Import-Package: com.online.shopping,
org.osgi.framework;version="1.6.0"
Service-Component: META-INF/component.xml

The implementation bundle is exposed as a declarative service component. From the manifest file, it is evident that the bundle is not exported as a package, but it is exposed as a service with the entry - Service-Component that this is exposed as a component and the component description is available in component.xml. With the help of such XML files, components declare their provided services. The OSGi framework helps to publish the CartImpl as a service in the OSGi service registry. The component.xml is as below:

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0" name="CartImpl">
<implementation class="com.online.shopping.impl.CartImpl"/>
<service>
<provide interface="com.online.shopping.ICart"/>
</service>
</scr:component>

The ICart is exposed as a service and the service is implemented by the CartImpl implementation class. Looking at the component.xml, it is clear that the component provides the ICart service. The component declares the implementation class and the provided interface. The declarative services in the OSGi framework publish the service at the execution time after the bundle is activated. The structure of the JAR file of the bundle is as follows:

Figure 5: Structure of Implementation Bundle

Client Bundle
The client bundle is supposed to consume the services exposed by the ICart service implementation and consume it. The client bundle is another component that imports the com.online.shopping package and consumes the service through OSGi service registry. The client bundle's manifest looks as below:

Manifest-Version: 1.0
Bundle-ManifestVersion: 2
Bundle-Name: CartClient
Bundle-SymbolicName: CartClient
Bundle-Version: 1.0.0.qualifier
Bundle-RequiredExecutionEnvironment: JavaSE-1.6
Import-Package: com.online.shopping,
org.osgi.framework;version="1.6.0",
org.osgi.service.component;version="1.1.0"
Service-Component: META-INF/component.xml

The client is also a component which consumes the services provided by the ICart component.

Figure 6: Structure of Client Bundle

The component.xml in client bundle has reference to the ICart service interface.

<?xml version="1.0" encoding="UTF-8"?>
<scr:component xmlns:scr="http://www.osgi.org/xmlns/scr/v1.1.0" name="CartClient">
<implementation class="com.client.CartClient"/>
<reference bind="gotService" cardinality="1..1" interface="com.online.shopping.ICart" name="ICart" policy="dynamic" unbind="lostService"/>
</scr:component>

Apart from the interface reference, the component.xml also refers to some methods called ‘gotService' and ‘lostService' during binding and unbinding of service references. These are the methods defined in the client class which will be invoked with the associated service references into the service object. This allows the component to find out the services without retrieving them. The declarative specifications in OSGi framework defines the methods where the service reference will be injected. The component service policy may be static or dynamic. In static policy, the service reference is injected once and not changed until the component is deactivated. Where as in the dynamic policy, the component is notified whenever the service comes or goes utilizing the true dynamism. In the example, it is dynamic. The client invokes the ICart service as follows:

package com.client;

import java.util.Collection;

import org.osgi.framework.ServiceReference;
import org.osgi.service.component.ComponentContext;

import com.online.shopping.ICart;
import com.online.shopping.Product;

public class CartClient {

ComponentContext context;
ServiceReference reference;
ICart cart;

public void activate(ComponentContext context) {
System.out.println("Activate Component");

if(reference!= null) {
cart = (ICart)context.locateService("ICart", reference);

Product product = new Product();
product.setName("OSGi");
product.setPrice(550.00);
cart.addItem(product, 20);

Product newProduct = new Product();
newProduct.setName("Enterprise OSGi");
newProduct.setPrice(400.00);
cart.addItem(newProduct, 10);

Collection<Product> productItems = cart.listItems();
for(Product items: productItems) {
System.out.println(items.getName()+"******"+ items.getPrice());             
}            

System.out.println("Total Price of Cart Items: "+cart.getTotalPrice());

cart.clearCart();
}

}

public void gotService(ServiceReference reference) {
System.out.println("Bind Service");
this.reference = reference;
}

public void lostService(ServiceReference reference) {
System.out.println("unbind Service");
this.reference = null;           
}

}

The client has defined three methods:

  • activate - part of declarative services API. This method is invoked when this component is activated. The ComponentContext is used to locate the ICart with the injected service reference.
  • gotService - user defined method as available in the component.xml, this method is invoked with the service reference (using dependency injection) when the service object is binded.
  • lostService - user defined method as mentioned in the client component.xml, this method is invoked with the injected service reference when the service object is unbinded.

Figure 7: Cart Component Bundles Deployment in OSGi Container

The client is not even aware of the implementation bundle. If there are multiple implementations available for the same service, the service is bounded dynamically by the environment. If there is any change in the implementation, only the implementation bundle will undergo change. A revised bundle can provide additional services which can be consumed by clients. So replacing components is easier and will not affect any other component. This way, OSGi gives good modularity by de-coupling components and a pluggable dynamic service model which are much needed features of a component model.

More Stories By Piram Manickam

Piram Manickam works at Infosys Limited. He would like to acknowledge and thank Sangeetha S, a beloved colleague and friend, for her invaluable contributions in this work.

More Stories By Subrahmanya SV

Subrahmanya SV works at Infosys Limited. He would like to acknowledge and thank Sangeetha S, a beloved colleague and friend, for her invaluable contributions in this work.

More Stories By S Sangeetha

S Sangeetha is a Senior Technical Architect at the E-Commerce Research Labs at Infosys Limited. She has over 15 years of experience in architecture, design and development of enterprise Java applications. She is also involved in enhancing the technical skills of Architects at Infosys. She has co-authored a book on ‘J2EE Architecture’ and also has written numerous articles on Java for various online Java forums like JavaWorld, java.net, DevX.com and internet.com. She can be reached at [email protected]

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect at GE, and Ibrahim Gokcen, who leads GE's advanced IoT analytics, focused on the Internet of Things / Industrial Internet and how to make it operational for business end-users. Learn about the challenges posed by machine and sensor data and how to marry it with enterprise data. They also discussed the tips and tricks to provide the Industrial Internet as an end-user consumable service using Big Data Analytics and Industrial Cloud.
Building low-cost wearable devices can enhance the quality of our lives. In his session at Internet of @ThingsExpo, Sai Yamanoor, Embedded Software Engineer at Altschool, provided an example of putting together a small keychain within a $50 budget that educates the user about the air quality in their surroundings. He also provided examples such as building a wearable device that provides transit or recreational information. He then reviewed the resources available to build wearable devices at home including open source hardware, the raw materials required and the options available to power s...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
Collecting data in the field and configuring multitudes of unique devices is a time-consuming, labor-intensive process that can stretch IT resources. Horan & Bird [H&B], Australia’s fifth-largest Solar Panel Installer, wanted to automate sensor data collection and monitoring from its solar panels and integrate the data with its business and marketing systems. After data was collected and structured, two major areas needed to be addressed: improving developer workflows and extending access to a business application to multiple users (multi-tenancy). Docker, a container technology, was used to ...
The true value of the Internet of Things (IoT) lies not just in the data, but through the services that protect the data, perform the analysis and present findings in a usable way. With many IoT elements rooted in traditional IT components, Big Data and IoT isn’t just a play for enterprise. In fact, the IoT presents SMBs with the prospect of launching entirely new activities and exploring innovative areas. CompTIA research identifies several areas where IoT is expected to have the greatest impact.
The 4th International Internet of @ThingsExpo, co-located with the 17th International Cloud Expo - to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA - announces that its Call for Papers is open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
The Internet of Things is not only adding billions of sensors and billions of terabytes to the Internet. It is also forcing a fundamental change in the way we envision Information Technology. For the first time, more data is being created by devices at the edge of the Internet rather than from centralized systems. What does this mean for today's IT professional? In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists will addresses this very serious issue of profound change in the industry.
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo, June 9-11, 2015, at the Javits Center in New York City. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be
Container frameworks, such as Docker, provide a variety of benefits, including density of deployment across infrastructure, convenience for application developers to push updates with low operational hand-holding, and a fairly well-defined deployment workflow that can be orchestrated. Container frameworks also enable a DevOps approach to application development by cleanly separating concerns between operations and development teams. But running multi-container, multi-server apps with containers is very hard. You have to learn five new and different technologies and best practices (libswarm, sy...
SYS-CON Events announced today that DragonGlass, an enterprise search platform, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. After eleven years of designing and building custom applications, OpenCrowd has launched DragonGlass, a cloud-based platform that enables the development of search-based applications. These are a new breed of applications that utilize a search index as their backbone for data retrieval. They can easily adapt to new data sets and provide access to both structured and unstruc...
The Internet of Things is a misnomer. That implies that everything is on the Internet, and that simply should not be - especially for things that are blurring the line between medical devices that stimulate like a pacemaker and quantified self-sensors like a pedometer or pulse tracker. The mesh of things that we manage must be segmented into zones of trust for sensing data, transmitting data, receiving command and control administrative changes, and peer-to-peer mesh messaging. In his session at @ThingsExpo, Ryan Bagnulo, Solution Architect / Software Engineer at SOA Software, focused on desi...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
SYS-CON Events announced today that MetraTech, now part of Ericsson, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Ericsson is the driving force behind the Networked Society- a world leader in communications infrastructure, software and services. Some 40% of the world’s mobile traffic runs through networks Ericsson has supplied, serving more than 2.5 billion subscribers.
While great strides have been made relative to the video aspects of remote collaboration, audio technology has basically stagnated. Typically all audio is mixed to a single monaural stream and emanates from a single point, such as a speakerphone or a speaker associated with a video monitor. This leads to confusion and lack of understanding among participants especially regarding who is actually speaking. Spatial teleconferencing introduces the concept of acoustic spatial separation between conference participants in three dimensional space. This has been shown to significantly improve comprehe...