Welcome!

Java IoT Authors: Kevin Jackson, Pat Romanski, Dana Gardner, Liz McMillan, AppDynamics Blog

Related Topics: @BigDataExpo, Java IoT, IoT User Interface, @CloudExpo, Apache, SDN Journal

@BigDataExpo: Article

So What? – Monitoring Hadoop Beyond Ganglia

Don’t just run Hadoop jobs at scale, run them efficiently and at scale

Over the last couple of months I have been talking to more and more customers who are either bringing their Hadoop clusters into production or have already done so and are now getting serious about operations. This leads to some interesting discussions about how to monitor Hadoop properly and one thing pops up quite often: Do they need anything beyond Ganglia? If yes, what should they do beyond it?

The Basics
As in every other system, monitoring in a Hadoop environment starts with the basics: System Metrics - CPU, Disk, Memory you know the drill. Of special importance in a Hadoop system is a well-balanced cluster; you don't want to have some nodes being much more (or less) utilized then others. Besides CPU and memory utilization, Disk utilization and of course I/O throughput is of high importance. After all the most likely bottleneck in a Big Data system is I/O - either with ingress (network and disk), moving data around (e.g., MapReduce shuffle on the network) and straightforward read/write to disk.

The problem in a Hadoop system is of course its size. Nothing new for us, some of our customers monitor well beyond 1000+ JVMs with CompuwareAPM. The "advantage" in a Hadoop system is its relative conformity - every node looks pretty much like the other. This is what Ganglia leverages.

Cluster Monitoring with Ganglia
What Ganglia is very good at is providing an overview over how a cluster is utilized. The load chart is particularly interesting:

This chart shows the CPU load on a 1000 Server cluster that has roughly 15.000 CPUs

It tells us the number of available cores in the system and the number of running processes (in theory a core can never handle more than one process at a time) and the 1-min load average. If the system is getting fully utilized the 1-min load average would approach the total number of CPUs. Another view on this is the well-known CPU utilization chart:

CPU Utilization over the last day. While the utilization stays well below 10% we see a lot of I/O wait spikes.

While the load chart gives a good overall impression of usage, the utilization tells us the story of how the CPUs are used. While typical CPU charts show a single server, Ganglia specializes in showing whole clusters (the picture shows CPU usage of a 1000 machine cluster). In the case of the depicted chart we see that the CPUs are experiencing a lot of I/O wait spikes, which points toward heavy disk I/O. Basically it seems the disk I/O is the reason that we cannot utilize our CPU better at these times. But in general our cluster is well underutilized in terms of CPU.

Trends are also easy to understand, as can be seen in this memory chart over a year.

Memory capacity and usage over a year

All this looks pretty good, so what is missing? The "so what" and "why" is what is missing. If my memory demand is growing, I have no way of knowing why it is growing. If the CPU chart tells me that I spend a lot of time waiting, it does not tell what to do, or why that is so? These questions are beyond the scope of Ganglia.

What about Hadoop specifics?
Ganglia also has a Hadoop plugin, which basically gives you access to all the usual Hadoop metrics (unfortunately a comprehensive list of Hadoop metrics is really hard to find, appreciate if somebody commented the link). There is a good explanation on what is interesting on Edward Caproli's page: JoinTheGrid. Basically you can use those metrics to monitor the capacity and usage trends of HDFS and the NameNodes and also how many jobs, mappers and reducers are running.

Capacity of the DataNodes over time

Capacity of the Name Nodes over time

The DataNode Operations give me an impression of I/O pressure on the Hadoop cluster

All these charts can of course be easily built in any modern monitoring or APM solution like CompuwareAPM, but Ganglia gives you a simple starting point; and it's Free as in Beer.

What's missing again is the so what? If my jobs are running a lot longer than yesterday, what should I do? Why do they run longer? A Hadoop expert might dig into 10 different charts around I/O and Network, spilling, look at log files among other things and try an educated guess as to what might be the problem. But we aren't all experts, neither do we have the time to dig into all of these metrics and log files all the time.

This is the reason that we and our customers are moving beyond Ganglia - to solve the "Why" and "So What" within time constraints.

Beyond the Basics #1 - Understanding Cluster Utilization
A use case that we get from customers is that they want to know which users or which pools (in case of the fair scheduler) are responsible for how much of the cluster utilization. LinkedIn just released White Elephant, a tool that parses MapReduce logs and builds some nice dashboards and shows you which of your users occupy how much of your cluster. This is of course based on log file analysis and thus okay for analysis but not for monitoring. With proper tools in place we can do the same thing in near real time.

The CPU Usage in the Hadoop Cluster on per User basis

In this example I wanted to monitor which user consumed how much of my Amazon EMR cluster. If we see a user or pool that occupies a lot of the cluster we can course also see which jobs are running and how much of the cluster they occupy.

The CPU Usage in the Hadoop Cluster on per Job basis

And this will also tell us if that job has always been there, and just uses a lot more resources now. This would be our cue to start analyzing what has changed.

Beyond the Basics #2 - Understanding why my jobs are slow(er)
If we want to understand why a job is slow we need to look at a high-level break down first.

In which phase of the map reduce do we spend the most time, or did we spend more time than yesterday? Understanding these timings in context with the respective job counters, like Map Input or Spilled Records, helps us understand why the phase took longer.

Overview of the time spent in different phases and the respective input/output counters

At this point we will already have a pretty good idea as to what happened. We either simply have more data to crunch (more input data) or a portion of the MapReduce job consumes more CPU (code change?) or we spill more records to disk (code change or Hadoop config change?). We might also detect an unbalanced cluster in the performance breakdown.

This job is executing nearly exclusively on a single node instead of distributing

In this case we want to check whether all the involved nodes processed the same amount of data

Here we see that there is a wide range from minimum, average to maximum on mapped input and output records. The data is not balanced

or if the difference can again be found in the code (different kinds of computations). If we are running against HBase we might of course have an issue with HBase performance or distribution.

At the beginning of the job only a single HBase region Server consumes CPU while all others remain idle

On the other hand, if a lot of mapping time is spent in the garbage collector then you should maybe invest in larger JVMs.

The Performance Breakdown of this particular job shows considerable time in GC suspension

If spilling data to disk is where we spend our time, we should take a closer look at that phase. It might turn out that all of our time is spent on disk wait.

If the Disk were the bottleneck we would see it on disk I/O here

Now if disk write is our bottleneck, then really the only thing that we can do is reduce the map output records. Adding a combiner will not reduce the disk write (it will actually increase it, read here). In other words combining only optimizes the shuffle phase, thus the amount of data sent over the network, but not spill time!!

And at the very detailed level we can look at single task executions and understand in detail what is really going on.

The detailed data about each Map, Reduce Task Atttempt as well as the spills and shuffles

Conclusion
Ganglia is a great tool for high-level monitoring of your Hadoop cluster utilization, but it is not enough. The fact that everybody is working on additional means to understand the Hadoop cluster (Hortonworks with Ambari, Cloudera with their Manager, LinkedIn with White Elephant, the Star Fish project...) shows that there is a lot more needed beyond simple monitoring. Even those more advanced monitoring tools are not always answering the "why" though, which is what we really need to do. This is where the Performance Management discipline can add a lot of value and really help you get the best out of your Hadoop cluster. In other words don't just run Hadoop jobs at scale, run them efficiently and at scale!

More Stories By Michael Kopp

Michael Kopp has over 12 years of experience as an architect and developer in the Enterprise Java space. Before coming to CompuwareAPM dynaTrace he was the Chief Architect at GoldenSource, a major player in the EDM space. In 2009 he joined dynaTrace as a technology strategist in the center of excellence. He specializes application performance management in large scale production environments with special focus on virtualized and cloud environments. His current focus is how to effectively leverage BigData Solutions and how these technologies impact and change the application landscape.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
With an estimated 50 billion devices connected to the Internet by 2020, several industries will begin to expand their capabilities for retaining end point data at the edge to better utilize the range of data types and sheer volume of M2M data generated by the Internet of Things. In his session at @ThingsExpo, Don DeLoach, CEO and President of Infobright, discussed the infrastructures businesses will need to implement to handle this explosion of data by providing specific use cases for filterin...
IoT generates lots of temporal data. But how do you unlock its value? You need to discover patterns that are repeatable in vast quantities of data, understand their meaning, and implement scalable monitoring across multiple data streams in order to monetize the discoveries and insights. Motif discovery and deep learning platforms are emerging to visualize sensor data, to search for patterns and to build application that can monitor real time streams efficiently. In his session at @ThingsExpo, ...
Early adopters of IoT viewed it mainly as a different term for machine-to-machine connectivity or M2M. This is understandable since a prerequisite for any IoT solution is the ability to collect and aggregate device data, which is most often presented in a dashboard. The problem is that viewing data in a dashboard requires a human to interpret the results and take manual action, which doesn’t scale to the needs of IoT.
Internet of @ThingsExpo has announced today that Chris Matthieu has been named tech chair of Internet of @ThingsExpo 2016 Silicon Valley. The 6thInternet of @ThingsExpo will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
What does it look like when you have access to cloud infrastructure and platform under the same roof? Let’s talk about the different layers of Technology as a Service: who cares, what runs where, and how does it all fit together. In his session at 18th Cloud Expo, Phil Jackson, Lead Technology Evangelist at SoftLayer, an IBM company, spoke about the picture being painted by IBM Cloud and how the tools being crafted can help fill the gaps in your IT infrastructure.
SYS-CON Events announced today the Enterprise IoT Bootcamp, being held November 1-2, 2016, in conjunction with 19th Cloud Expo | @ThingsExpo at the Santa Clara Convention Center in Santa Clara, CA. Combined with real-world scenarios and use cases, the Enterprise IoT Bootcamp is not just based on presentations but with hands-on demos and detailed walkthroughs. We will introduce you to a variety of real world use cases prototyped using Arduino, Raspberry Pi, BeagleBone, Spark, and Intel Edison. Y...
Much of IT terminology is often misused and misapplied. Modernization and transformation are two such terms. They are often used interchangeably even though they mean different things and have very different connotations. Indeed, it is somewhat safe to assume that in IT any transformative effort is likely to also have a modernizing effect, and thus, we can see these as levels of improvement efforts. However, many businesses are being led to believe if they don’t transform now they risk becoming ...
CenturyLink has announced that application server solutions from GENBAND are now available as part of CenturyLink’s Networx contracts. The General Services Administration (GSA)’s Networx program includes the largest telecommunications contract vehicles ever awarded by the federal government. CenturyLink recently secured an extension through spring 2020 of its offerings available to federal government agencies via GSA’s Networx Universal and Enterprise contracts. GENBAND’s EXPERiUS™ Application...
SYS-CON Events announced today that LeaseWeb USA, a cloud Infrastructure-as-a-Service (IaaS) provider, will exhibit at the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. LeaseWeb is one of the world's largest hosting brands. The company helps customers define, develop and deploy IT infrastructure tailored to their exact business needs, by combining various kinds cloud solutions.
The best-practices for building IoT applications with Go Code that attendees can use to build their own IoT applications. In his session at @ThingsExpo, Indraneel Mitra, Senior Solutions Architect & Technology Evangelist at Cognizant, provided valuable information and resources for both novice and experienced developers on how to get started with IoT and Golang in a day. He also provided information on how to use Intel Arduino Kit, Go Robotics API and AWS IoT stack to build an application tha...
Whether your IoT service is connecting cars, homes, appliances, wearable, cameras or other devices, one question hangs in the balance – how do you actually make money from this service? The ability to turn your IoT service into profit requires the ability to create a monetization strategy that is flexible, scalable and working for you in real-time. It must be a transparent, smoothly implemented strategy that all stakeholders – from customers to the board – will be able to understand and comprehe...
It’s 2016: buildings are smart, connected and the IoT is fundamentally altering how control and operating systems work and speak to each other. Platforms across the enterprise are networked via inexpensive sensors to collect massive amounts of data for analytics, information management, and insights that can be used to continuously improve operations. In his session at @ThingsExpo, Brian Chemel, Co-Founder and CTO of Digital Lumens, will explore: The benefits sensor-networked systems bring to ...
SYS-CON Events announced today that Venafi, the Immune System for the Internet™ and the leading provider of Next Generation Trust Protection, will exhibit at @DevOpsSummit at 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Venafi is the Immune System for the Internet™ that protects the foundation of all cybersecurity – cryptographic keys and digital certificates – so they can’t be misused by bad guys in attacks...
"Tintri was started in 2008 with the express purpose of building a storage appliance that is ideal for virtualized environments. We support a lot of different hypervisor platforms from VMware to OpenStack to Hyper-V," explained Dan Florea, Director of Product Management at Tintri, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York City, NY.
Identity is in everything and customers are looking to their providers to ensure the security of their identities, transactions and data. With the increased reliance on cloud-based services, service providers must build security and trust into their offerings, adding value to customers and improving the user experience. Making identity, security and privacy easy for customers provides a unique advantage over the competition.
Is your aging software platform suffering from technical debt while the market changes and demands new solutions at a faster clip? It’s a bold move, but you might consider walking away from your core platform and starting fresh. ReadyTalk did exactly that. In his General Session at 19th Cloud Expo, Michael Chambliss, Head of Engineering at ReadyTalk, will discuss why and how ReadyTalk diverted from healthy revenue and over a decade of audio conferencing product development to start an innovati...
For basic one-to-one voice or video calling solutions, WebRTC has proven to be a very powerful technology. Although WebRTC’s core functionality is to provide secure, real-time p2p media streaming, leveraging native platform features and server-side components brings up new communication capabilities for web and native mobile applications, allowing for advanced multi-user use cases such as video broadcasting, conferencing, and media recording.
Large scale deployments present unique planning challenges, system commissioning hurdles between IT and OT and demand careful system hand-off orchestration. In his session at @ThingsExpo, Jeff Smith, Senior Director and a founding member of Incenergy, will discuss some of the key tactics to ensure delivery success based on his experience of the last two years deploying Industrial IoT systems across four continents.
There will be new vendors providing applications, middleware, and connected devices to support the thriving IoT ecosystem. This essentially means that electronic device manufacturers will also be in the software business. Many will be new to building embedded software or robust software. This creates an increased importance on software quality, particularly within the Industrial Internet of Things where business-critical applications are becoming dependent on products controlled by software. Qua...
"There's a growing demand from users for things to be faster. When you think about all the transactions or interactions users will have with your product and everything that is between those transactions and interactions - what drives us at Catchpoint Systems is the idea to measure that and to analyze it," explained Leo Vasiliou, Director of Web Performance Engineering at Catchpoint Systems, in this SYS-CON.tv interview at 18th Cloud Expo, held June 7-9, 2016, at the Javits Center in New York Ci...