Click here to close now.

Welcome!

JAVA IoT Authors: Liz McMillan, John Wetherill, Pat Romanski, Carmen Gonzalez, Elizabeth White

Related Topics: JAVA IoT, Industrial IoT, Microservices Expo, Open Source Cloud, CloudExpo® Blog, Apache

JAVA IoT: Article

Tracing Black Boxes II: Monitoring Solr

Providing insight into Apache Solr instances by correlating individual traces with JMX metrics

Your site is indexed on Google, but that doesn't mean you're done with search. Content-rich websites provide native search functionality to keep users engaged, maintain visual consistency, and provide content-aware filtering. But it's very hard to implement an effective, scalable search system, which is why Apache Solr is just about the most popular ‘black box' in web application infrastructure. This Lucene-backed search appliance has seen wide adoption due to its performance, reliability, and ease of deployment. In fact, it's become so widely used that many Solr deployments are managed by people who have no other exposure to running Java applications. Documents go in, indexed RESTful search comes out - that is, until something breaks.

TraceView can provide insight into Apache Solr instances by correlating individual traces with JMX metrics, such as the rate of requests over the past 5 minutes. Even at a very low overall volume, an increased traffic rate is already increasing request latency.

TraceView can provide insight into Apache Solr instances by correlating individual traces with JMX metrics, such as the rate of requests over the past 5 minutes. Even at a very low overall volume, an increased traffic rate is already increasing request latency.

Unlike most web application front-ends, Solr is a complex, stateful application that contains persistent objects, runs background indexing processes, and maintains multiple tiers of caches. There are a lot of ways to deploy and configure Solr, and that means there are a lot of ways to make mistakes. But even when you have everything up and running, there's always the lingering question of whether you could be getting more out of your Solr instances (or reducing the number of them!).

One of the best ways to get insight into Solr's internal abstractions - such as cores, handlers, and components - is to monitor them directly via JMX. I've previously written about using JMX metrics to keep tabs on JVM memory internals, but JMX is a common API for collecting data from your Java applications and any application can make use of it. Because of this it's been widely adopted in the Java ecosystem to centralize the provision of application-specific performance data.

Solr provides JMX metrics on a variety of internals, such as queryResultCache.

 

Solr provides JMX metrics on a variety of internals, such as queryResultCache.

 

Solr exposes hundreds of JMX metrics across dozens of categories, and efficient use of them can help you delve into Solr performance in a variety of ways. Some metrics are better for providing a high-level view of Solr's overall workflow. The queryResultCachecategory, pictured above, provides a snapshot of how often your data was successfully cached, as well as how often cache entries had to be evicted due to insufficient space. Other metric categories are more granular and provide detail at the level of classes, or even objects. An update request will be routed to a different handler depending on whether the data was provided in XML, CSV, or JSON; each of these update handlers exposes metrics independently, like how long it has been running and the number of errors.

JMX metrics can even provide insight into advanced Solr use cases, like modifying result scoring to permit n-dimensional spatial searches or customizing results based on user data stored in Redis. Even without adding custom JMX metrics, Solr will report enough data to allow you to separately track the effectiveness of these custom searches relative to more traditional queries.

Let's look at a practical example. You just got paged because half of your distributed Solr cluster lost connectivity in a widespread EC2 outage. It looks like it might last a while, so you decide to add additional capacity in one of the functioning availability zones. Rather than spending time re-indexing your content, you decide to replicate your existing Solr data to the new servers. Using the high-level metrics provided byReplicationHandler, you determine that replication is proceeding smoothly. Halfway through your second replication, though, you realize that the first replicated server is taking five times as long as your original servers to respond to the same user queries, even though it's running on the same hardware. Checking out the cache metrics for a specific search handler, it looks like the hit ratios on its caches are abysmal - but wait, what's actually in those caches? After checking the metrics for that node's active Searcher instance, you realize you didn't set up Solr to warm the cache - it was starting off empty! Now you know to make a quick configuration change next time you spin up an instance so that the first users routed to it will have acceptable performance.

So, that sounds awesome - but how do you do it? The easiest approach is to view Solr's JMX statistics through its web interface (in Solr 3.x,
it's at /solr/admin/stats.jsp, while in Solr 4.x it's available at a collection-based URL like /solr/#/collection1/plugins/). However, web access won't be an option for most deployments. Alternately, you could use remote jconsole, but that requires either a complex remote configuration that's a tremendous hassle to set up or the glacially slow option of SSH X11 forwarding (e.g., ssh -X solr jconsole).

In practice, those approaches all suck. Solr is stunningly verbose: it exposes hundreds of JMX metrics out of the box, and that number expands quickly as you add additional handlers and components. Purpose-built JMX monitoring tools like jconsole are great for browsing the available metrics to see what's available, but they're horrible for pulling out the ones you want in a hurry. They also allow ‘write' operations like initiating garbage collection or clearing caches - definitely not something you want to give out to every developer!

TraceView automatically monitors the JMX metrics of every node involved in this distributed Solr Cloud trace.

 

TraceView automatically monitors the JMX metrics of every node involved in this distributed Solr Cloud trace.

On a day to day basis, it's more common to read JMX metrics via automated, ‘read-only' monitoring tools like NagiosGanglia, or AppNeta TraceView. These tools not only present a number of metrics at once, but they also generally let you filter down to a meaningful subset of the hundreds of lines exposed by Solr. On the other hand, "health check"-style metrics aren't necessarily the only way to look the problem. Each request has a number of metrics it can generate, and bringing together these data sources in one application has some real advantages. Looking at an individual request can tell you exactly what went wrong, it's often the context of JMX data that says why. Examining the concurrent host activity can disambiguate between whether a pause was due to a garbage collection event in the JVM or an overloaded document cache in Solr forcing additional disk access.

Next time, we'll talk about how TraceView captures these request-based metrics directly from the Solr internals. In the meantime, if you've got a Solr installation, sign up for your free account, put in on that server, and take a look inside that black box!

More Stories By James Meickle

James started as a hobbyist web developer, even though his academic background is in social psychology and political science. Lately his interests as a professional Drupal developer have migrated towards performance, security, and automation. His favorite languages is Python, his favorite editor is Sublime, and his favorite game is Dwarf Fortress.

@ThingsExpo Stories
SYS-CON Events announced today that BMC will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. BMC delivers software solutions that help IT transform digital enterprises for the ultimate competitive business advantage. BMC has worked with thousands of leading companies to create and deliver powerful IT management services. From mainframe to cloud to mobile, BMC pairs high-speed digital innovation with robust IT industrialization – allowing customers to provide amazing user experiences with optimized IT per...
As the Internet of Things unfolds, mobile and wearable devices are blurring the line between physical and digital, integrating ever more closely with our interests, our routines, our daily lives. Contextual computing and smart, sensor-equipped spaces bring the potential to walk through a world that recognizes us and responds accordingly. We become continuous transmitters and receivers of data. In his session at @ThingsExpo, Andrew Bolwell, Director of Innovation for HP's Printing and Personal Systems Group, discussed how key attributes of mobile technology – touch input, sensors, social, and ...
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo, June 9-11, 2015, at the Javits Center in New York City. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be
The Internet of Things is not only adding billions of sensors and billions of terabytes to the Internet. It is also forcing a fundamental change in the way we envision Information Technology. For the first time, more data is being created by devices at the edge of the Internet rather than from centralized systems. What does this mean for today's IT professional? In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists will addresses this very serious issue of profound change in the industry.
WebRTC defines no default signaling protocol, causing fragmentation between WebRTC silos. SIP and XMPP provide possibilities, but come with considerable complexity and are not designed for use in a web environment. In his session at @ThingsExpo, Matthew Hodgson, technical co-founder of the Matrix.org, discussed how Matrix is a new non-profit Open Source Project that defines both a new HTTP-based standard for VoIP & IM signaling and provides reference implementations.
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? In this Power Panel at DevOps Summit, moderated by Jason Bloomberg, the leading expert on architecting agility for the enterprise and president of Intellyx, panelists will peel away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud environment, and we must architect and code accordingly. At the very least, you'll have no problem fil...
"People are a lot more knowledgeable about APIs now. There are two types of people who work with APIs - IT people who want to use APIs for something internal and the product managers who want to do something outside APIs for people to connect to them," explained Roberto Medrano, Executive Vice President at SOA Software, in this SYS-CON.tv interview at Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Almost everyone sees the potential of Internet of Things but how can businesses truly unlock that potential. The key will be in the ability to discover business insight in the midst of an ocean of Big Data generated from billions of embedded devices via Systems of Discover. Businesses will also need to ensure that they can sustain that insight by leveraging the cloud for global reach, scale and elasticity.
In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect at GE, and Ibrahim Gokcen, who leads GE's advanced IoT analytics, focused on the Internet of Things / Industrial Internet and how to make it operational for business end-users. Learn about the challenges posed by machine and sensor data and how to marry it with enterprise data. They also discussed the tips and tricks to provide the Industrial Internet as an end-user consumable service using Big Data Analytics and Industrial Cloud.
Building low-cost wearable devices can enhance the quality of our lives. In his session at Internet of @ThingsExpo, Sai Yamanoor, Embedded Software Engineer at Altschool, provided an example of putting together a small keychain within a $50 budget that educates the user about the air quality in their surroundings. He also provided examples such as building a wearable device that provides transit or recreational information. He then reviewed the resources available to build wearable devices at home including open source hardware, the raw materials required and the options available to power s...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
Collecting data in the field and configuring multitudes of unique devices is a time-consuming, labor-intensive process that can stretch IT resources. Horan & Bird [H&B], Australia’s fifth-largest Solar Panel Installer, wanted to automate sensor data collection and monitoring from its solar panels and integrate the data with its business and marketing systems. After data was collected and structured, two major areas needed to be addressed: improving developer workflows and extending access to a business application to multiple users (multi-tenancy). Docker, a container technology, was used to ...
The true value of the Internet of Things (IoT) lies not just in the data, but through the services that protect the data, perform the analysis and present findings in a usable way. With many IoT elements rooted in traditional IT components, Big Data and IoT isn’t just a play for enterprise. In fact, the IoT presents SMBs with the prospect of launching entirely new activities and exploring innovative areas. CompTIA research identifies several areas where IoT is expected to have the greatest impact.
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
Container frameworks, such as Docker, provide a variety of benefits, including density of deployment across infrastructure, convenience for application developers to push updates with low operational hand-holding, and a fairly well-defined deployment workflow that can be orchestrated. Container frameworks also enable a DevOps approach to application development by cleanly separating concerns between operations and development teams. But running multi-container, multi-server apps with containers is very hard. You have to learn five new and different technologies and best practices (libswarm, sy...