Welcome!

Java IoT Authors: Liz McMillan, Pat Romanski, Elizabeth White, Stackify Blog, Mehdi Daoudi

Related Topics: SDN Journal, Java IoT, Containers Expo Blog, @CloudExpo, Cloud Security, @BigDataExpo

SDN Journal: Blog Post

Stateless Transport Tunneling (STT) Meets the Network

At a high level the concepts of larger packets, hardware offload, reduced CPU load and interrupts all make sense

Last week I walked through the packet formats for VXLAN and NVGRE specifically focused on ways by which the overlay packets provide information to the physical network that help the physical network. Some of the initial extreme thoughts that the overlay and physical network can and should be completely ignorant of each other have softened more recently and more pragmatic thoughts of collaborating layers are being articulated. At Plexxi we have often mentioned that we believe the physical network and the overlay need to be closely orchestrated to get the most benefit out of the total network solution. And orchestration != ECMP.

In addition to VXLAN and NVGRE, Stateless Transport Tunneling (STT) is an encapsulation mechanism used by VMware, mostly for communication between server based vSwitches. It is a bit more involved and complicated than VXLAN and NVGRE, mostly because it was designed to carry large data packets, up to 64 Kbytes. Physical networks have limitations on the size of a packet that can be transferred. Ethernet standard maximum transmission unit (MTU) used to be 1500 bytes, but most ethernet devices these days can support jumbo packets allowing packets of 4, 9 or even 16 Kbytes in size. Even at those sizes, large data transfers are somewhat hampered by the work involved in taking a large chunk of data and then chopping them up into smaller portions to be transmitted. In a response to this, hardware vendors have taken some of this functionality and added it to the Network Interface Cards (NICs) on servers and have them do most of this segmentation and re-assembly work based on how TCP takes large portions of data and chops them into smaller segments. Doing his in hardware means it can be done faster, but more importantly, it removes this burden from the server CPUs, allowing them to do other (more useful) work.

STT was designed to make use of these TCP capabilities in NICs. STT can take ethernet packets up to 64 Kbytes from a VM on a server, and tunnel it to its destination as a 64 Kbyte entity. This STT frame has to be chopped into smaller pieces to match the MTU of the physical network, but an STT packet looks just like a TCP segment to the receiving NICs, allowing them to reconstruct the original 64 Kbyte packet without needing the CPU.

When the sending tunnel endpoint receives a large chunk of data to be transmitted at another VM at the other side of a tunnel, the vSwitch takes several steps to encapsulate this packet. First, it adds an STT Frame Header to the packet.

STT Frame Format 1

The STT Header is 18 bytes in length and has a variety of administrative fields, but the key field is the Context ID. This is a 64 bit field and its intended use is similar to the VXLAN Network Identifier (VNI) or the NVGRE Virtual Subnet ID (VSID). While the semantics of this field are somewhat defined, its value and how to use it is left open in the latest specifications. Its main purpose is to provide the receiving tunnel endpoint the information it needs to determine where this packet needs to be sent after decapsulation.

After the STT Frame Header has been added, this new packet (original packet  + new STT header) is chopped into smaller pieces so that each piece is at least 62 bytes smaller than the MTU of the physical network. Each of these new segments receives 24 byte TCP like header, a normal 20 byte IP header, and of course the final 18 byte Ethernet header before transmission. The magic (or ugliness for those less enamored by STT) is in the TCP like header. These 24 bytes are formatted just like a normal TCP header to ensure the hardware in the NICs can re-assemble segments that belong together. The traditional Acknowledgement field in TCP is used as a fragment ID, essentially telling the NIC that all packets/segments that come in with the same fragment ID belong together and should be reassembled into the larger original ethernet frame. The traditional Sequence number is used as an offset indicator, to tell the NIC in what order the fragments need to be put together.

STT Frame Format 2

Similar to VXLAN and NVGRE described last week, STT has a mechanism to create entropy for the physical network to distinguish flows from each other and allow them to be balanced using ECMP (or link aggregation – LAG) based deployments. In STT, the TCP source port is used to create entropy. The originating tunnel end point will use some hash calculation on the original packets header information and use the result to populate the TCP source port. Switches in the physical network can now use the TCP port information from the tunneled packet in their hash calculation for ECMP or LAG packet distribution.

While STT is likely to be more efficient than either VXLAN or NVGRE for the transfer of large amount of information because it offloads the segmentation and re-assembly, it carries significantly more overhead than either VXLAN or NVGRE in additional header information for smaller packets. STT adds 80 bytes of new header to a VM originated ethernet packet for the first segment of this packet, 62 for each following segment. Compare that to a consistent 46 bytes for each NVGRE encapsulated packet, and 54 bytes for VXLAN. For traffic between VMs on the same server this may not matter, but it certainly does for traffic carried across the physical network. For the plentiful mice flows, we have likely doubled the size and bandwidth required for each.

A probably more significant drawback of STT comes from its strength. Designed for large packet transfers, once an original packet is encapsulated with STT header, chopped into parts, then encapsulated into individual ethernet, IP and TCP (like) headers, only the first packet provides any clue or context of the original source, destination, protocol, application and other content. The relevant pieces of that will only be found in the first segment, any follow up segments only provide enough information about the tunnel endpoints and no other original context without the first segment. And that makes debugging really hard. It also makes it hard to differentiate traffic on the physical network, even at a very high level Virtual Network identifier. And every existing network based service (realizing that one of the goals of overlay networks is to push this to the vSwitches themselves) will also have a hard time deciding what to do with these packets.

At a high level the concepts of larger packets, hardware offload, reduced CPU load and interrupts all make sense. But most data center ethernet networks can easily support 9k or even 16k packets, so perhaps the gap between 16k packet based transfer and 64k semi-stream based communication is really not that much considering that the bulk of packets are small to begin with (remember those mice and elephants?). Perhaps aligning the MTU of the virtual port with that of the network may be worthwhile to have the STT and original header in each and every packet on the wire. Regardless of whether that is a real wire, or a virtual one.

[Today's fun fact: One of the primary reasons the Mayflower pilgrims ended their voyage at Plymouth Rock was pretty much the same reason people today suspend their journeys: they ran out of beer. No need for a funny punch line on that one]

The post Stateless Transport Tunneling (STT) meets the Network appeared first on Plexxi.

Read the original blog entry...

More Stories By Marten Terpstra

Marten Terpstra is a Product Management Director at Plexxi Inc. Marten has extensive knowledge of the architecture, design, deployment and management of enterprise and carrier networks.

@ThingsExpo Stories
SYS-CON Events announced today that Secure Channels, a cybersecurity firm, will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Secure Channels, Inc. offers several products and solutions to its many clients, helping them protect critical data from being compromised and access to computer networks from the unauthorized. The company develops comprehensive data encryption security strategie...
In his session at @ThingsExpo, Sudarshan Krishnamurthi, a Senior Manager, Business Strategy, at Cisco Systems, discussed how IT and operational technology (OT) work together, as opposed to being in separate siloes as once was traditional. Attendees learned how to fully leverage the power of IoT in their organization by bringing the two sides together and bridging the communication gap. He also looked at what good leadership must entail in order to accomplish this, and how IT managers can be the ...
Recently, WebRTC has a lot of eyes from market. The use cases of WebRTC are expanding - video chat, online education, online health care etc. Not only for human-to-human communication, but also IoT use cases such as machine to human use cases can be seen recently. One of the typical use-case is remote camera monitoring. With WebRTC, people can have interoperability and flexibility for deploying monitoring service. However, the benefit of WebRTC for IoT is not only its convenience and interopera...
There is only one world-class Cloud event on earth, and that is Cloud Expo – which returns to Silicon Valley for the 21st Cloud Expo at the Santa Clara Convention Center, October 31 - November 2, 2017. Every Global 2000 enterprise in the world is now integrating cloud computing in some form into its IT development and operations. Midsize and small businesses are also migrating to the cloud in increasing numbers. Companies are each developing their unique mix of cloud technologies and service...
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
SYS-CON Events announced today that App2Cloud will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct. 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. App2Cloud is an online Platform, specializing in migrating legacy applications to any Cloud Providers (AWS, Azure, Google Cloud).
IoT is at the core or many Digital Transformation initiatives with the goal of re-inventing a company's business model. We all agree that collecting relevant IoT data will result in massive amounts of data needing to be stored. However, with the rapid development of IoT devices and ongoing business model transformation, we are not able to predict the volume and growth of IoT data. And with the lack of IoT history, traditional methods of IT and infrastructure planning based on the past do not app...
To get the most out of their data, successful companies are not focusing on queries and data lakes, they are actively integrating analytics into their operations with a data-first application development approach. Real-time adjustments to improve revenues, reduce costs, or mitigate risk rely on applications that minimize latency on a variety of data sources. Jack Norris reviews best practices to show how companies develop, deploy, and dynamically update these applications and how this data-first...
Intelligent Automation is now one of the key business imperatives for CIOs and CISOs impacting all areas of business today. In his session at 21st Cloud Expo, Brian Boeggeman, VP Alliances & Partnerships at Ayehu, will talk about how business value is created and delivered through intelligent automation to today’s enterprises. The open ecosystem platform approach toward Intelligent Automation that Ayehu delivers to the market is core to enabling the creation of the self-driving enterprise.
Internet-of-Things discussions can end up either going down the consumer gadget rabbit hole or focused on the sort of data logging that industrial manufacturers have been doing forever. However, in fact, companies today are already using IoT data both to optimize their operational technology and to improve the experience of customer interactions in novel ways. In his session at @ThingsExpo, Gordon Haff, Red Hat Technology Evangelist, shared examples from a wide range of industries – including en...
Consumers increasingly expect their electronic "things" to be connected to smart phones, tablets and the Internet. When that thing happens to be a medical device, the risks and benefits of connectivity must be carefully weighed. Once the decision is made that connecting the device is beneficial, medical device manufacturers must design their products to maintain patient safety and prevent compromised personal health information in the face of cybersecurity threats. In his session at @ThingsExpo...
"We're a cybersecurity firm that specializes in engineering security solutions both at the software and hardware level. Security cannot be an after-the-fact afterthought, which is what it's become," stated Richard Blech, Chief Executive Officer at Secure Channels, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Events announced today that Massive Networks will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Massive Networks mission is simple. To help your business operate seamlessly with fast, reliable, and secure internet and network solutions. Improve your customer's experience with outstanding connections to your cloud.
SYS-CON Events announced today that Grape Up will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct. 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Grape Up is a software company specializing in cloud native application development and professional services related to Cloud Foundry PaaS. With five expert teams that operate in various sectors of the market across the U.S. and Europe, Grape Up works with a variety of customers from emergi...
Detecting internal user threats in the Big Data eco-system is challenging and cumbersome. Many organizations monitor internal usage of the Big Data eco-system using a set of alerts. This is not a scalable process given the increase in the number of alerts with the accelerating growth in data volume and user base. Organizations are increasingly leveraging machine learning to monitor only those data elements that are sensitive and critical, autonomously establish monitoring policies, and to detect...
Everything run by electricity will eventually be connected to the Internet. Get ahead of the Internet of Things revolution and join Akvelon expert and IoT industry leader, Sergey Grebnov, in his session at @ThingsExpo, for an educational dive into the world of managing your home, workplace and all the devices they contain with the power of machine-based AI and intelligent Bot services for a completely streamlined experience.
Because IoT devices are deployed in mission-critical environments more than ever before, it’s increasingly imperative they be truly smart. IoT sensors simply stockpiling data isn’t useful. IoT must be artificially and naturally intelligent in order to provide more value In his session at @ThingsExpo, John Crupi, Vice President and Engineering System Architect at Greenwave Systems, will discuss how IoT artificial intelligence (AI) can be carried out via edge analytics and machine learning techn...
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, will examine the regulations and provide insight on how it affects technology, challenges the established rules and will usher in new levels of diligence a...
An increasing number of companies are creating products that combine data with analytical capabilities. Running interactive queries on Big Data requires complex architectures to store and query data effectively, typically involving data streams, an choosing efficient file format/database and multiple independent systems that are tied together through custom-engineered pipelines. In his session at @BigDataExpo at @ThingsExpo, Tomer Levi, a senior software engineer at Intel’s Advanced Analytics ...