Click here to close now.

Welcome!

Java Authors: Plutora Blog, Harry Trott, Liz McMillan, Pat Romanski, Andreas Grabner

Related Topics: SDN Journal, Java, Virtualization, Cloud Expo, Security, Big Data Journal

SDN Journal: Blog Post

Stateless Transport Tunneling (STT) Meets the Network

At a high level the concepts of larger packets, hardware offload, reduced CPU load and interrupts all make sense

Last week I walked through the packet formats for VXLAN and NVGRE specifically focused on ways by which the overlay packets provide information to the physical network that help the physical network. Some of the initial extreme thoughts that the overlay and physical network can and should be completely ignorant of each other have softened more recently and more pragmatic thoughts of collaborating layers are being articulated. At Plexxi we have often mentioned that we believe the physical network and the overlay need to be closely orchestrated to get the most benefit out of the total network solution. And orchestration != ECMP.

In addition to VXLAN and NVGRE, Stateless Transport Tunneling (STT) is an encapsulation mechanism used by VMware, mostly for communication between server based vSwitches. It is a bit more involved and complicated than VXLAN and NVGRE, mostly because it was designed to carry large data packets, up to 64 Kbytes. Physical networks have limitations on the size of a packet that can be transferred. Ethernet standard maximum transmission unit (MTU) used to be 1500 bytes, but most ethernet devices these days can support jumbo packets allowing packets of 4, 9 or even 16 Kbytes in size. Even at those sizes, large data transfers are somewhat hampered by the work involved in taking a large chunk of data and then chopping them up into smaller portions to be transmitted. In a response to this, hardware vendors have taken some of this functionality and added it to the Network Interface Cards (NICs) on servers and have them do most of this segmentation and re-assembly work based on how TCP takes large portions of data and chops them into smaller segments. Doing his in hardware means it can be done faster, but more importantly, it removes this burden from the server CPUs, allowing them to do other (more useful) work.

STT was designed to make use of these TCP capabilities in NICs. STT can take ethernet packets up to 64 Kbytes from a VM on a server, and tunnel it to its destination as a 64 Kbyte entity. This STT frame has to be chopped into smaller pieces to match the MTU of the physical network, but an STT packet looks just like a TCP segment to the receiving NICs, allowing them to reconstruct the original 64 Kbyte packet without needing the CPU.

When the sending tunnel endpoint receives a large chunk of data to be transmitted at another VM at the other side of a tunnel, the vSwitch takes several steps to encapsulate this packet. First, it adds an STT Frame Header to the packet.

STT Frame Format 1

The STT Header is 18 bytes in length and has a variety of administrative fields, but the key field is the Context ID. This is a 64 bit field and its intended use is similar to the VXLAN Network Identifier (VNI) or the NVGRE Virtual Subnet ID (VSID). While the semantics of this field are somewhat defined, its value and how to use it is left open in the latest specifications. Its main purpose is to provide the receiving tunnel endpoint the information it needs to determine where this packet needs to be sent after decapsulation.

After the STT Frame Header has been added, this new packet (original packet  + new STT header) is chopped into smaller pieces so that each piece is at least 62 bytes smaller than the MTU of the physical network. Each of these new segments receives 24 byte TCP like header, a normal 20 byte IP header, and of course the final 18 byte Ethernet header before transmission. The magic (or ugliness for those less enamored by STT) is in the TCP like header. These 24 bytes are formatted just like a normal TCP header to ensure the hardware in the NICs can re-assemble segments that belong together. The traditional Acknowledgement field in TCP is used as a fragment ID, essentially telling the NIC that all packets/segments that come in with the same fragment ID belong together and should be reassembled into the larger original ethernet frame. The traditional Sequence number is used as an offset indicator, to tell the NIC in what order the fragments need to be put together.

STT Frame Format 2

Similar to VXLAN and NVGRE described last week, STT has a mechanism to create entropy for the physical network to distinguish flows from each other and allow them to be balanced using ECMP (or link aggregation – LAG) based deployments. In STT, the TCP source port is used to create entropy. The originating tunnel end point will use some hash calculation on the original packets header information and use the result to populate the TCP source port. Switches in the physical network can now use the TCP port information from the tunneled packet in their hash calculation for ECMP or LAG packet distribution.

While STT is likely to be more efficient than either VXLAN or NVGRE for the transfer of large amount of information because it offloads the segmentation and re-assembly, it carries significantly more overhead than either VXLAN or NVGRE in additional header information for smaller packets. STT adds 80 bytes of new header to a VM originated ethernet packet for the first segment of this packet, 62 for each following segment. Compare that to a consistent 46 bytes for each NVGRE encapsulated packet, and 54 bytes for VXLAN. For traffic between VMs on the same server this may not matter, but it certainly does for traffic carried across the physical network. For the plentiful mice flows, we have likely doubled the size and bandwidth required for each.

A probably more significant drawback of STT comes from its strength. Designed for large packet transfers, once an original packet is encapsulated with STT header, chopped into parts, then encapsulated into individual ethernet, IP and TCP (like) headers, only the first packet provides any clue or context of the original source, destination, protocol, application and other content. The relevant pieces of that will only be found in the first segment, any follow up segments only provide enough information about the tunnel endpoints and no other original context without the first segment. And that makes debugging really hard. It also makes it hard to differentiate traffic on the physical network, even at a very high level Virtual Network identifier. And every existing network based service (realizing that one of the goals of overlay networks is to push this to the vSwitches themselves) will also have a hard time deciding what to do with these packets.

At a high level the concepts of larger packets, hardware offload, reduced CPU load and interrupts all make sense. But most data center ethernet networks can easily support 9k or even 16k packets, so perhaps the gap between 16k packet based transfer and 64k semi-stream based communication is really not that much considering that the bulk of packets are small to begin with (remember those mice and elephants?). Perhaps aligning the MTU of the virtual port with that of the network may be worthwhile to have the STT and original header in each and every packet on the wire. Regardless of whether that is a real wire, or a virtual one.

[Today's fun fact: One of the primary reasons the Mayflower pilgrims ended their voyage at Plymouth Rock was pretty much the same reason people today suspend their journeys: they ran out of beer. No need for a funny punch line on that one]

The post Stateless Transport Tunneling (STT) meets the Network appeared first on Plexxi.

Read the original blog entry...

More Stories By Marten Terpstra

Marten Terpstra is a Product Management Director at Plexxi Inc. Marten has extensive knowledge of the architecture, design, deployment and management of enterprise and carrier networks.

@ThingsExpo Stories
Roberto Medrano, Executive Vice President at SOA Software, had reached 30,000 page views on his home page - http://RobertoMedrano.SYS-CON.com/ - on the SYS-CON family of online magazines, which includes Cloud Computing Journal, Internet of Things Journal, Big Data Journal, and SOA World Magazine. He is a recognized executive in the information technology fields of SOA, internet security, governance, and compliance. He has extensive experience with both start-ups and large companies, having been involved at the beginning of four IT industries: EDA, Open Systems, Computer Security and now SOA.
The industrial software market has treated data with the mentality of “collect everything now, worry about how to use it later.” We now find ourselves buried in data, with the pervasive connectivity of the (Industrial) Internet of Things only piling on more numbers. There’s too much data and not enough information. In his session at @ThingsExpo, Bob Gates, Global Marketing Director, GE’s Intelligent Platforms business, to discuss how realizing the power of IoT, software developers are now focused on understanding how industrial data can create intelligence for industrial operations. Imagine ...
Operational Hadoop and the Lambda Architecture for Streaming Data Apache Hadoop is emerging as a distributed platform for handling large and fast incoming streams of data. Predictive maintenance, supply chain optimization, and Internet-of-Things analysis are examples where Hadoop provides the scalable storage, processing, and analytics platform to gain meaningful insights from granular data that is typically only valuable from a large-scale, aggregate view. One architecture useful for capturing and analyzing streaming data is the Lambda Architecture, representing a model of how to analyze rea...
SYS-CON Events announced today that Vitria Technology, Inc. will exhibit at SYS-CON’s @ThingsExpo, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Vitria will showcase the company’s new IoT Analytics Platform through live demonstrations at booth #330. Vitria’s IoT Analytics Platform, fully integrated and powered by an operational intelligence engine, enables customers to rapidly build and operationalize advanced analytics to deliver timely business outcomes for use cases across the industrial, enterprise, and consumer segments.
The explosion of connected devices / sensors is creating an ever-expanding set of new and valuable data. In parallel the emerging capability of Big Data technologies to store, access, analyze, and react to this data is producing changes in business models under the umbrella of the Internet of Things (IoT). In particular within the Insurance industry, IoT appears positioned to enable deep changes by altering relationships between insurers, distributors, and the insured. In his session at @ThingsExpo, Michael Sick, a Senior Manager and Big Data Architect within Ernst and Young's Financial Servi...
SYS-CON Events announced today that Open Data Centers (ODC), a carrier-neutral colocation provider, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place June 9-11, 2015, at the Javits Center in New York City, NY. Open Data Centers is a carrier-neutral data center operator in New Jersey and New York City offering alternative connectivity options for carriers, service providers and enterprise customers.
The explosion of connected devices / sensors is creating an ever-expanding set of new and valuable data. In parallel the emerging capability of Big Data technologies to store, access, analyze, and react to this data is producing changes in business models under the umbrella of the Internet of Things (IoT). In particular within the Insurance industry, IoT appears positioned to enable deep changes by altering relationships between insurers, distributors, and the insured. In his session at @ThingsExpo, Michael Sick, a Senior Manager and Big Data Architect within Ernst and Young's Financial Servi...
PubNub on Monday has announced that it is partnering with IBM to bring its sophisticated real-time data streaming and messaging capabilities to Bluemix, IBM’s cloud development platform. “Today’s app and connected devices require an always-on connection, but building a secure, scalable solution from the ground up is time consuming, resource intensive, and error-prone,” said Todd Greene, CEO of PubNub. “PubNub enables web, mobile and IoT developers building apps on IBM Bluemix to quickly add scalable realtime functionality with minimal effort and cost.”
Sensor-enabled things are becoming more commonplace, precursors to a larger and more complex framework that most consider the ultimate promise of the IoT: things connecting, interacting, sharing, storing, and over time perhaps learning and predicting based on habits, behaviors, location, preferences, purchases and more. In his session at @ThingsExpo, Tom Wesselman, Director of Communications Ecosystem Architecture at Plantronics, will examine the still nascent IoT as it is coalescing, including what it is today, what it might ultimately be, the role of wearable tech, and technology gaps stil...
In the consumer IoT, everything is new, and the IT world of bits and bytes holds sway. But industrial and commercial realms encompass operational technology (OT) that has been around for 25 or 50 years. This grittier, pre-IP, more hands-on world has much to gain from Industrial IoT (IIoT) applications and principles. But adding sensors and wireless connectivity won’t work in environments that demand unwavering reliability and performance. In his session at @ThingsExpo, Ron Sege, CEO of Echelon, will discuss how as enterprise IT embraces other IoT-related technology trends, enterprises with i...
When it comes to the Internet of Things, hooking up will get you only so far. If you want customers to commit, you need to go beyond simply connecting products. You need to use the devices themselves to transform how you engage with every customer and how you manage the entire product lifecycle. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, will show how “product relationship management” can help you leverage your connected devices and the data they generate about customer usage and product performance to deliver extremely compelling and reliabl...
The Internet of Things (IoT) is causing data centers to become radically decentralized and atomized within a new paradigm known as “fog computing.” To support IoT applications, such as connected cars and smart grids, data centers' core functions will be decentralized out to the network's edges and endpoints (aka “fogs”). As this trend takes hold, Big Data analytics platforms will focus on high-volume log analysis (aka “logs”) and rely heavily on cognitive-computing algorithms (aka “cogs”) to make sense of it all.
With several hundred implementations of IoT-enabled solutions in the past 12 months alone, this session will focus on experience over the art of the possible. Many can only imagine the most advanced telematics platform ever deployed, supporting millions of customers, producing tens of thousands events or GBs per trip, and hundreds of TBs per month. With the ability to support a billion sensor events per second, over 30PB of warm data for analytics, and hundreds of PBs for an data analytics archive, in his session at @ThingsExpo, Jim Kaskade, Vice President and General Manager, Big Data & Ana...
One of the biggest impacts of the Internet of Things is and will continue to be on data; specifically data volume, management and usage. Companies are scrambling to adapt to this new and unpredictable data reality with legacy infrastructure that cannot handle the speed and volume of data. In his session at @ThingsExpo, Don DeLoach, CEO and president of Infobright, will discuss how companies need to rethink their data infrastructure to participate in the IoT, including: Data storage: Understanding the kinds of data: structured, unstructured, big/small? Analytics: What kinds and how responsiv...
Since 2008 and for the first time in history, more than half of humans live in urban areas, urging cities to become “smart.” Today, cities can leverage the wide availability of smartphones combined with new technologies such as Beacons or NFC to connect their urban furniture and environment to create citizen-first services that improve transportation, way-finding and information delivery. In her session at @ThingsExpo, Laetitia Gazel-Anthoine, CEO of Connecthings, will focus on successful use cases.
Sensor-enabled things are becoming more commonplace, precursors to a larger and more complex framework that most consider the ultimate promise of the IoT: things connecting, interacting, sharing, storing, and over time perhaps learning and predicting based on habits, behaviors, location, preferences, purchases and more. In his session at @ThingsExpo, Tom Wesselman, Director of Communications Ecosystem Architecture at Plantronics, will examine the still nascent IoT as it is coalescing, including what it is today, what it might ultimately be, the role of wearable tech, and technology gaps stil...
The true value of the Internet of Things (IoT) lies not just in the data, but through the services that protect the data, perform the analysis and present findings in a usable way. With many IoT elements rooted in traditional IT components, Big Data and IoT isn’t just a play for enterprise. In fact, the IoT presents SMBs with the prospect of launching entirely new activities and exploring innovative areas. CompTIA research identifies several areas where IoT is expected to have the greatest impact.
Wearable devices have come of age. The primary applications of wearables so far have been "the Quantified Self" or the tracking of one's fitness and health status. We propose the evolution of wearables into social and emotional communication devices. Our BE(tm) sensor uses light to visualize the skin conductance response. Our sensors are very inexpensive and can be massively distributed to audiences or groups of any size, in order to gauge reactions to performances, video, or any kind of presentation. In her session at @ThingsExpo, Jocelyn Scheirer, CEO & Founder of Bionolux, will discuss ho...
SYS-CON Events announced today that GENBAND, a leading developer of real time communications software solutions, has been named “Silver Sponsor” of SYS-CON's WebRTC Summit, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. The GENBAND team will be on hand to demonstrate their newest product, Kandy. Kandy is a communications Platform-as-a-Service (PaaS) that enables companies to seamlessly integrate more human communications into their Web and mobile applications - creating more engaging experiences for their customers and boosting collaboration and productiv...
From telemedicine to smart cars, digital homes and industrial monitoring, the explosive growth of IoT has created exciting new business opportunities for real time calls and messaging. In his session at @ThingsExpo, Ivelin Ivanov, CEO and Co-Founder of Telestax, shared some of the new revenue sources that IoT created for Restcomm – the open source telephony platform from Telestax. Ivelin Ivanov is a technology entrepreneur who founded Mobicents, an Open Source VoIP Platform, to help create, deploy, and manage applications integrating voice, video and data. He is the co-founder of TeleStax, a...