Click here to close now.

Welcome!

JAVA IoT Journal Authors: Pat Romanski, Kelly Murphy, AppDynamics Blog, Liz McMillan, Elizabeth White

Related Topics: BigDataExpo® Blog, JAVA IoT Journal, Microservices Expo Blog, MICROSOFT CLOUD

BigDataExpo® Blog: Article

Detecting Anomalies that Matter!

Like needles in a haystack

As Netuitive's Chief Data Scientist, I am fortunate to work closely with some of the worlds' largest banks, telcos, and eCommerce companies. Increasingly the executives that I speak with at these companies are no longer focused on just detecting application performance anomalies - they want to understand the impact this has on the business.  For example - "is the current slowdown in the payment service impacting sales?"

You can think of it as detecting IT operations anomalies that really matter - but this is easier said than done.

Like Needles in a Haystack
When it comes to IT analytics, there is a general notion that the more monitoring data you are able to consume, analyze, and correlate, the more accurate your results will be. Just pile all that infrastructure, application performance, and business metric data together and good things are bound to happen, right?

Larger organizations typically have access to voluminous data being generated from dozens of monitoring tools that are tracking thousands of infrastructure and application components.  At the same time, these companies often track hundreds of business metrics using a totally different set of tools.

The problem is that, collectively, these monitoring tools do not communicate with each other.  Not only is it hard to get holistic visibility into the performance and health of a particular business service, it's even harder to discover complex anomalies that have business impact.

Anomalies are Like Snowflakes
Compounding the challenge is the fact that no two anomalies are alike.  Anomalies that matter have multiple facets.  They reflect a composite behavior of many layers of interacting and inter-dependent components.  Additionally, they can be cleverly disguised or hidden in a haze of visible but insignificant noise.  No matter how many graphs and charts you display on the largest LCD monitor you can find - the type of scalable real-time analysis required to find and expose what's important is humanly impossible.

Enter IT Operations Analytics
Analytics such as statistical machine learning allow us to understand the "normal" behavior of each resource we are tracking - be it a single IT component, web service, application, or business process. Additional algorithms help us find patterns and correlations between the thousands of IT and business metrics that matter in a critical service.

The Shift Towards IT Operations Analytics is Already Happening
This is not about the future.  It's about what companies are doing today.

Several years ago thought-leading enterprises (primarily large banks with critical revenue driving services) began experimenting with a new breed of IT analytics platform. These companies' electronic and web facing businesses had so much revenue (and reputation) at stake that they needed to find the anomalies that matter -- the ones that were truly indicative of current or impending problems.

Starting with an almost "blank slate", these forward-thinking companies began developing open IT analytics platforms that easily integrated any type of data source in real time to provide a comprehensive view of patterns and relationships between IT infrastructure and business service performance. This was only possible with technologies that leveraged sophisticated data integration, knowledge modeling, and analytics to discover and capture the unique behavior of complex business services.  Anything less would fail, because, like snowflakes, no two anomalies are alike.

The Continuous Need for Algorithm Research
The online banking system at one bank is different than the online system at the next bank.  And the transaction slowdown that occurred last week may have a totally different root cause than the one two months ago.  Even more interesting are external factors such as seasonality and its effects on demand.  For example, payment companies see increased workload around holidays such as Thanksgiving and Mother's Day whereas gaming/betting companies' demand is driven more by factors such as the NFL Playoffs or the World Series.

For this reason, analytics research is an ongoing endeavor at Netuitive - part driven by customer needs and in part by advances in technology.   Once Netuitive technology is installed in an enterprise and integrating data collected across multiple layers in the service stack, behavior learning begins immediately.  As time passes, the statistical algorithms have more observations to feed their results and this leads to increasing confidence in both anomalies detected and proactive forecasts.  Additionally, customer domain knowledge can be layered in to Netuitive's real-time analysis in the form of knowledge bases and supervised learning algorithms.  The Research Group at Netuitive works closely with our Professional Services Group as well as directly with customers to regularly review actual delivered alarm quality to tune the algorithms that we have as well as identify new algorithms that would deliver greater value in an actionable timeframe.

Since Netuitive's software architecture allows for "pluggable" algorithms, we can incrementally introduce new analytics capabilities easily, at first in an experimental or laboratory setting and ultimately, once verified, into production.

The IT operations management market has matured over the past two decades to the point that most critical components are well instrumented.  The data is there and mainstream IT organizations (not just visionary early adopters) realize that analytics deliver measurable and tangible value.   My vision and challenge is to get our platform to the point where customers can easily customize the algorithms on their own, as their needs and IT infrastructure evolve over time.  This is where platforms need to get to because of the endless variety of ways that enterprises must discover and remediate "anomalies that matter".

Stay tuned.  In an upcoming blog I will drill down on some specific industry examples of algorithms we developed as part of some large enterprise IT analytic platform solutions.

More Stories By Elizabeth A. Nichols, Ph.D

As Chief Data Scientist for Netuitive, Elizabeth A. Nichols, Ph.D. leads development of algorithms, models, and analytics. This includes both enriching the company’s current portfolio as well as developing new analytics to support current and emerging technologies and IT-dependent business services across multiple industry sectors.

Previously, Dr. Nichols co-founded PlexLogic, a provider of open analytics services for quantitative data analysis, risk modeling and data visualization. In her role as CTO and Chief Data Scientist, she developed a cloud platform for collecting, cleansing and correlating data from heterogeneous sources, computing metrics, applying algorithms and models, and visualizing results. Prior to Plexlogic, Dr. Nichols co-founded and served as CTO for ClearPoint Metrics, a security metrics software platform that was eventually sold to nCircle. Prior to ClearPoint Metrics, Dr. Nichols served in technical advisory and leadership positions at CA, Legent Corp, BladeLogic, and Digital Analysis Corp. At CA, she was VP of Research and Development and Lead Architect for agent instrumentation and analytics for CA Unicenter. After receiving a Ph.D. in Mathematics from Duke University, she began her career as an operations research analyst developing war gaming models for the US Army.

@ThingsExpo Stories
The true value of the Internet of Things (IoT) lies not just in the data, but through the services that protect the data, perform the analysis and present findings in a usable way. With many IoT elements rooted in traditional IT components, Big Data and IoT isn’t just a play for enterprise. In fact, the IoT presents SMBs with the prospect of launching entirely new activities and exploring innovative areas. CompTIA research identifies several areas where IoT is expected to have the greatest impact.
The 4th International Internet of @ThingsExpo, co-located with the 17th International Cloud Expo - to be held November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA - announces that its Call for Papers is open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
The Internet of Things is not only adding billions of sensors and billions of terabytes to the Internet. It is also forcing a fundamental change in the way we envision Information Technology. For the first time, more data is being created by devices at the edge of the Internet rather than from centralized systems. What does this mean for today's IT professional? In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists will addresses this very serious issue of profound change in the industry.
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo, June 9-11, 2015, at the Javits Center in New York City. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be
Container frameworks, such as Docker, provide a variety of benefits, including density of deployment across infrastructure, convenience for application developers to push updates with low operational hand-holding, and a fairly well-defined deployment workflow that can be orchestrated. Container frameworks also enable a DevOps approach to application development by cleanly separating concerns between operations and development teams. But running multi-container, multi-server apps with containers is very hard. You have to learn five new and different technologies and best practices (libswarm, sy...
SYS-CON Events announced today that DragonGlass, an enterprise search platform, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. After eleven years of designing and building custom applications, OpenCrowd has launched DragonGlass, a cloud-based platform that enables the development of search-based applications. These are a new breed of applications that utilize a search index as their backbone for data retrieval. They can easily adapt to new data sets and provide access to both structured and unstruc...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things is a misnomer. That implies that everything is on the Internet, and that simply should not be - especially for things that are blurring the line between medical devices that stimulate like a pacemaker and quantified self-sensors like a pedometer or pulse tracker. The mesh of things that we manage must be segmented into zones of trust for sensing data, transmitting data, receiving command and control administrative changes, and peer-to-peer mesh messaging. In his session at @ThingsExpo, Ryan Bagnulo, Solution Architect / Software Engineer at SOA Software, focused on desi...
SYS-CON Events announced today that MetraTech, now part of Ericsson, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Ericsson is the driving force behind the Networked Society- a world leader in communications infrastructure, software and services. Some 40% of the world’s mobile traffic runs through networks Ericsson has supplied, serving more than 2.5 billion subscribers.
While great strides have been made relative to the video aspects of remote collaboration, audio technology has basically stagnated. Typically all audio is mixed to a single monaural stream and emanates from a single point, such as a speakerphone or a speaker associated with a video monitor. This leads to confusion and lack of understanding among participants especially regarding who is actually speaking. Spatial teleconferencing introduces the concept of acoustic spatial separation between conference participants in three dimensional space. This has been shown to significantly improve comprehe...
Buzzword alert: Microservices and IoT at a DevOps conference? What could possibly go wrong? In this Power Panel at DevOps Summit, moderated by Jason Bloomberg, the leading expert on architecting agility for the enterprise and president of Intellyx, panelists will peel away the buzz and discuss the important architectural principles behind implementing IoT solutions for the enterprise. As remote IoT devices and sensors become increasingly intelligent, they become part of our distributed cloud environment, and we must architect and code accordingly. At the very least, you'll have no problem fil...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Today’s enterprise is being driven by disruptive competitive and human capital requirements to provide enterprise application access through not only desktops, but also mobile devices. To retrofit existing programs across all these devices using traditional programming methods is very costly and time consuming – often prohibitively so. In his session at @ThingsExpo, Jesse Shiah, CEO, President, and Co-Founder of AgilePoint Inc., discussed how you can create applications that run on all mobile devices as well as laptops and desktops using a visual drag-and-drop application – and eForms-buildi...
The Internet of Things promises to transform businesses (and lives), but navigating the business and technical path to success can be difficult to understand. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, demonstrated how to approach creating broadly successful connected customer solutions using real world business transformation studies including New England BioLabs and more.
The recent trends like cloud computing, social, mobile and Internet of Things are forcing enterprises to modernize in order to compete in the competitive globalized markets. However, enterprises are approaching newer technologies with a more silo-ed way, gaining only sub optimal benefits. The Modern Enterprise model is presented as a newer way to think of enterprise IT, which takes a more holistic approach to embracing modern technologies.
Every day we read jaw-dropping stats on the explosion of data. We allocate significant resources to harness and better understand it. We build businesses around it. But we’ve only just begun. For big payoffs in Big Data, CIOs are turning to cognitive computing. Cognitive computing’s ability to securely extract insights, understand natural language, and get smarter each time it’s used is the next, logical step for Big Data.