Welcome!

Java Authors: Pat Romanski, Carmen Gonzalez, Victoria Livschitz, Liz McMillan, Elizabeth White

Related Topics: Security, Java, Wireless, Linux, Virtualization, Web 2.0

Security: Blog Feed Post

Where You Mitigate Heartbleed Matters

There’s the impact on gadgets and devices we might not immediately think of being vulnerable

There are a variety of opinions on the seriousness of Heartbleed being put forth ranging from "it's not the end of the world" to "the sky is falling, duck and cover." Usually the former cites the relatively low percentage of sites impacted by Heartbleed, pegged at about 17% or 500,000 sites by Netcraft. The latter cite the number of consumers impacted, which is a way bigger number to be sure. Sites tracking the impact to users suggest many of the largest sites have potentially been impacted, translating into many millions of users.

And then there’s the impact on gadgets and devices we might not immediately think of being vulnerable. A wide variety of smart phones, IP phones, switches and routers have been identified as being vulnerable. Home internet routers and that nifty system you had put in that lets you mess with your house’s temperature from any device, anywhere are likely impacted. With the Internet of Things connecting more and more devices it’s likely that list will only continue to grow. The growing consensus is that a plurality of the impacted devices will never be updated; leaving organizations that may interact with those devices vulnerable and in need of a mitigating solution that doesn’t rely on updates or changes to the device.

There will be, as everyone scrambles to protect customers and consumers from Heartbleed, a variety of mitigating solutions offered up to address this pesky bug. Network devices will enable organizations with the visibility necessary to detect and reject requests attempting to exploit the vulnerability.

There are a variety of points within the data path where solutions could be put into place to mitigate this (and similar) vulnerabilities. Thus customers must choose the most strategic point in the network at which to deploy their selected mitigation. To choose that point, organizations should ask how the exploit is detected by given solutions. To see why that's needful, consider how the attack works.

How Heartbleed Works

INFO-anatomy-of-heartbleed-2

 

Heartbleed takes advantage of a missing length check in the OpenSSL code handling a relatively innocuous extension to the TSL/SSL protocol (defined in RFC 6520). It comprises two simple messages: a request and a response. The request can be sent be either the client or the server as a means to keep the connection alive. The sender ships off a HeartbeatMessage with a small amount of data, expecting the receiver to send back that same data. What's important about the protocol interaction is that whichever party sends the request determines the length of the response. The sender tells the receiver how much data it's sending - and thus how much should be returned.

Now, the OpenSSL code should be making sure the length the attacker says he's sending is actually what's available. The code, however, does not. It simply trusts the sender and grabs whatever amount of data was specified out of memory. This is how an attacker can access data that's in memory and wind up with all sorts of sensitive data like passwords and private keys.

Mitigation Options

Because this exploit takes advantage of a vulnerability in encrypted communications, any mitigating solution must be in the path of that communication. That's a given. In that path are three points where this exploit can be mitigated:

1. Client. You can check the client operating system and device type and match that against known usage of the impacted OpenSSL versions. Once detected, the client can be rejected - preventing the offending request from ever being sent in the first place. Rejection of clients based on the possibility they might be an attacker can result in angry legitimate consumers, employees or partners, however.

2. On Request. Inspect client requests and upon discovery of a HeartbeatMessage, reject it. This prevents the request from being forwarding to vulnerable systems and servers.

3. On Response. Inspect responses and upon seeing a HeartbeatMessage response, check its length. If it's greater than a length you feel comfortable with, discard it. This method will prevent attackers from receiving sensitive data, but it should be noted that at the point of discovery, the server - and data - has already been compromised.

Location in the Network Matters
You have to be in communication path to implement these solutions. That means some solutions being put forth are architecturally misplaced to be able to completely mitigate this vulnerability. For example, the firewall landscape is bifurcating and separating inbound (application delivery) and outbound (next generation firewall) duties. That means while next-generation firewalls (NGFW) are capable of the inspection and interaction necessary to detect and mitigate Heartbleed on response, they generally only do so in the outbound use case. That's an important capability, but it won't catch inbound attempts, just outbound. Further complicating the situation is a growing delineation of security responsibilities between inbound and outbound in the firewall market. Growth and scale of security has led to separate inbound and outbound security solutions. NGFW are an outbound solution, generally positioned only as protection for corporate users. They’re intended to protect organizations from malware and malicious code entering the corporate data center by means of its employees accessing infected sites. They aren’t deployed in a position to protect servers and applications on the inbound path. Those that are can provide inbound protection but only on response, which means your servers have already been compromised.

The right place to implement a mitigating solution is one that will afford you the choice of your mitigating solution - or allow all three, if you really want comprehensive coverage. It must be in the data path and have visibility into both the client and the server side of the equation. In most networks, that strategic point of control is the application delivery firewall.

bifurcation

Using the right tool in the right place in the network means you can implement any (or all) of the three mitigating solutions in not only a one place, but in the most effective place. The right tool is not just one that has the right position in the network. It takes visibility and programmability to dig deeply into the network stack and find the data indicative of an attack – intentional or not. The right tool will be able to distinguish between client side and server side traffic and apply the applicable logic. The logic that detects Heartbleed on the client side is different than that of the server side. In the case of the client it must look for a specific message indicating a Heartbeat request or inspecting the client device environment itself. On the server side, it’s checking the size of the response. Each of these cases requires unique code. That means the right tool must have a programmatic environment that can execute with surgical-like precision the logic necessary at the right time – at the time of connection, on request and on response.

The right tool, then, is positioned on the inbound path – in front of vulnerable services – and offers an event-driven, programmatic way to execute the right logic at the right time to detect vulnerable clients, malicious requests and responses carrying unauthorized sensitive data. An F5 ADC offers that event-driven, programmatic interface with iRules and is strategically positioned in the network to support all three mitigation solutions.
Consider again how Heartbleed works and the three mitigation options:

INFO-anatomy-of-heartbleed-2

(1) Client. In most network architectures this means it is connecting to an application delivery controller (ADC) that provides load balancing services. When that ADC is F5, it also acts as an application delivery firewall (ADF) and can be programmatically controlled.  That means it can inspect the request and, if it's vulnerable, reject the connection.

(2) On Request. Because an ADC sits between the client and server and acts as a proxy, it sees every request and response. It can be programmatically instructed using iRules to inspect those requests and, upon finding a Heartbeat request message, can reject it.  It is not necessary to decrypt the request to detect the Heartbeat message.

(3) On Response. As noted, the strategic point of control in which an F5 ADC is deployed in the network means it sees every response, too. It can programmatically inspect responses and if found to be over a specified length, discard it to prevent the attacker from getting a hold of sensitive data.

F5 suggests the "On Request" mitigation for dealing with Heartbleed. This approach minimizes the impact to clients and prevents legitimate requests from being rejected, and further assures that servers are not compromised. Customers have the option, of course, to implement any or all three of these options in order to protect their applications, customers and data as they see fit. F5 supports customer choices in every aspect of application delivery whether related to security, orchestration or architectural model.

Action Items

At this point, nearly a week after the exposure of Heartbleed, organizations should have a good handle on how it works and what the impact is to their business. There's no question the response to Heartbleed involves server patches and upgrades and the procurement of new keys, with consumer password change processes to come soon thereafter.

In the meantime, servers (and thus customers) remain vulnerable. Organizations should be looking at putting into place a mitigation solution to protect both while longer-term plans are put into action.

No matter which approach you choose, F5 has got you covered.

[Edited: 11:11am PT with new graphic]

Read the original blog entry...

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

@ThingsExpo Stories
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.