Welcome!

Java Authors: Elizabeth White, Pat Romanski, Liz McMillan, Jason Bloomberg, Trevor Parsons

Related Topics: SDN Journal, Java, Linux, Virtualization

SDN Journal: Blog Post

There Is Cost Per Port and Then There Is Cost Per Port…

I let you do the math on the cost of that infrastructure. And the installation. And the maintenance

Earlier this week, Ethan Banks wrote a very nice article about Mellanox’s dual spine and leaf network in support of a large amount 10GbE access ports. After describing the scaled up network design, he reviews 8 observations about the design, not to point out good or bad, but merely to point out specific points to consider. Fully coincidental (Ethan lives close to us, but I am pretty sure he cannot peek through our windows) we had gone through a similar exercise this week, documenting the choices and limitations of spine and leaf networks. And as always, the conclusions are not ones of right or wrong, more of awareness of choices and consequences.

The Mellanox design Ethan describes employes an extra spine layer, we have seen and heard the same from Arista and others, some calling it a spine-spine or similar. Nitpicking perhaps, but adding a spine layer to a spine and leaf network and still calling it a spine and leaf network is like adding a docking station, screen and keyboard to a phone and still calling it a phone. It’s a computer that can make calls. And a spine and leaf network with an extra spine is a fat tree.

Ethan points out in his first few points that the sheer amount of cables and optics is astonishing. Let me try and put some numbers around that statement. If you build an approximate 3:1 oversubscribed spine and leaf network out of generic switches, I would probably use a Trident2 based ToR switch with 48 SFP+/10GbE ports and 6 QSFP/40GbE ports. The 48 ports should serve most rack deployments with single homed servers, only really dense or heavily multi homed servers would need more ports and I will use 4 of the QSFP ports to connect to my spine. That leaves 2 QSFPs on each leaf to be used for extra access ports, at the cost of some oversubscription. Or if I wanted I could use these as extra spine connections, lowering my oversubscription to 2:1. As a spine, and staying away from chassis based systems, I would pick a 32xQSFP/40GbE switch.

The largest spine and leaf I could build out of this combination is one that contains 16 spine switches and 96 leaf switches. In a spine and leaf I need to connect each leaf to each spine and I have the equivalent of 16x10GbE to use out of each leaf, which I can connect to at best 16 spines. With each spine receiving 1x10GbE from each leaf, I can build out to 96 leafs to fill out my 32xQSFP or 96x10GbE equivalent spine switch capacity. 96 Leaf switches give me 4608 10GbE access ports at 3:1 oversubscription, 5376 at a slightly worse oversubscription if I use the extra QSFP ports on my leaf switches. To support these 5376 access ports, I need 3584 10GbE fabric ports: 16 each from 96 leaf switches plus 32×4 from each spine. That means 1792 switch interconnect cables. And 3584 10GbE short reach optics, because the vast majority of connections between spines and leafs is likely to be at a distance that DAC cables cannot cover (not considering the fact that most high density 10GbE switches are designed without PHYs, limiting the use of passive cables to usually 5m or less).

I let you do the math on the cost of that infrastructure. And the installation. And the maintenance. And the sheer complexity of running a 10GbE from each leaf to each spine. If you want to reduce some of this complexity, you can switch to using 40GbE/QSFPs between the leafs and spines, but by doing so you have reduced the maximum size of the network. Each leaf will now contribute 1 QSFP worth of interconnect to each spine, to a 32xQSFP spine can only support 32 leaf switches, or 1536 10GbE access ports (1792 if you use the 2 extra leaf QSFP ports). And you probably noticed that I left no room on the spine switches to actually leave this spine and leaf network to the rest of the network infrastructure. Taking a few QSFPs for that will reduce the size of the network more.

Even in the spine, spine and leaf network (or spine, leaf and ToR in Mellanox terminology) the amount of cabling between the ToR (someone explain why that is not the leaf of the network?) and the aggregation leaf may be reduced, the cabling between their aggregation leaf and spine still follows the same model as above.

We often focus on the cost of switches and the derived cost per port. Of course the cost per port is important, but don’t fool yourself by taking the cost of a switch and dividing it by the number of ports it supports. It makes for great quotes in press releases, but the actual cost for that port is way higher the moment you add in the overhead required to connect that port to the rest of the network. And for spine and leaf networks, the cost of the rest of the network has a very large portion of cables and optics. Even for reasonably priced optics, that piece of the infrastructure is likely going to cost more than the cost of the spine switches together. Even when you create one of these multispined animals…

[Today's fun fact: The human spine contains 120 muscles and approximately 220 individual ligaments.]

The post There is cost per port and then there is cost per port… appeared first on Plexxi.

Read the original blog entry...

More Stories By Marten Terpstra

Marten Terpstra is a Product Management Director at Plexxi Inc. Marten has extensive knowledge of the architecture, design, deployment and management of enterprise and carrier networks.

@ThingsExpo Stories
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.
SYS-CON Events announced today that Windstream, a leading provider of advanced network and cloud communications, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Windstream (Nasdaq: WIN), a FORTUNE 500 and S&P 500 company, is a leading provider of advanced network communications, including cloud computing and managed services, to businesses nationwide. The company also offers broadband, phone and digital TV services to consumers primarily in rural areas.
"There is a natural synchronization between the business models, the IoT is there to support ,” explained Brendan O'Brien, Co-founder and Chief Architect of Aria Systems, in this SYS-CON.tv interview at the 15th International Cloud Expo®, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo (http://www.CloudComputingExpo.com), moderated by Ashar Baig, Research Director, Cloud, at Gigaom Research, Nate Gordon, Director of T...