Welcome!

Java IoT Authors: Elizabeth White, Liz McMillan, Pat Romanski, Zakia Bouachraoui, Yeshim Deniz

Blog Feed Post

Diving into H2O

by Joseph Rickert One of the remarkable features of the R language is its adaptability. Motivated by R’s popularity and helped by R’s expressive power and transparency developers working on other platforms display what looks like inexhaustible creativity in providing seamless interfaces to software that complements R’s strengths. The H2O R package that connects to 0xdata’s H2O software (Apache 2.0 License) is an example of this kind of creativity. According to the 0xdata website, H2O is “The Open Source In-Memory, Prediction Engine for Big Data Science”. Indeed, H2O offers an impressive array of machine learning algorithms. The H2O R package provides functions for building GLM, GBM, Kmeans, Naive Bayes, Principal Components Analysis, Principal Components Regression, Random Forests and Deep Learning (multi-layer neural net models). Examples with timing information of running all of these models on fairly large data sets are available on the 0xdata website. Execution speeds are very impressive. In this post, I thought I would start a little slower and look at H2O from an R point of View. H2O is a Java Virtual Machine that is optimized for doing “in memory” processing of distributed, parallel machine learning algorithms on clusters. A “cluster” is a software construct that can be can be fired up on your laptop, on a server, or across the multiple nodes of a cluster of real machines, including computers that form a Hadoop cluster. According to the documentation a cluster’s “memory capacity is the sum across all H2O nodes in the cluster”. So, as I understand it, if you were to build a 16 node cluster of machines each having 64GB of DRAM, and you installed H2O everything then you could run the H2O machine learning algorithms using a terabyte of memory. Underneath the covers, the H2O JVM sits on an in-memory, non-persistent key-value (KV) store that uses a distributed JAVA memory model. The KV store holds state information, all results and the big data itself. H2O keeps the data in a heap. When the heap gets full, i.e. when you are working with more data than physical DRAM, H20 swaps to disk. (See Cliff Click’s blog for the details.) The main point here is that the data is not in R. R only has a pointer to the data, an S4 object containing the IP address, port and key name for the data sitting in H2O. The R H2O package communicates with the H2O JVM over a REST API. R sends RCurl commands and H2O sends back JSON responses. Data ingestion, however, does not happen via the REST API. Rather, an R user calls a function that causes the data to be directly parsed into the H2O KV store. The H2O R package provides several functions for doing this Including: h20.importFile() which imports and parses files from a local directory, h20.importURL() which imports and pareses files from a website, and h2o.importHDFS() which imports and parses HDFS files sitting on a Hadoop cluster. So much for the background: let’s get started with H2O. The first thing you need to do is to get Java running on your machine. If you don’t already have Java the default download ought to be just fine. Then fetch and install the H2O R package. Note that the h2o.jar executable is currently shipped with the h2o R package. The following code from the 0xdata website ran just fine from RStudio on my PC: # The following two commands remove any previously installed H2O packages for R. if ("package:h2o" %in% search()) { detach("package:h2o", unload=TRUE) } if ("h2o" %in% rownames(installed.packages())) { remove.packages("h2o") }   # Next, we download, install and initialize the H2O package for R. install.packages("h2o", repos=(c("http://s3.amazonaws.com/h2o-release/h2o/rel-kahan/5/R", getOption("repos"))))   library(h2o) localH2O = h2o.init()   # Finally, let's run a demo to see H2O at work. demo(h2o.glm) Created by Pretty R at inside-R.org Note that the function h20.init() uses the defaults to start up R on your local machine. Users can also provide parameters to specify an IP address and port number in order to connect to a remote instance of H20 running on a cluster. h2o.init(Xmx="10g") will start up the H2O KV store with 10GB of RAM. demo(h2o,glm) runs the glm demo to let you know that everything is working just fine. I will save examining the model for another time. Instead let's look at some other H2O functionality. The first thing to get straight with H2O is to be clear about when you are working in R and when you are working in the H2O JVM. The H2O R package implements several R functions that are wrappers to H2O native functions. "H2O supports an R-like language" (See a note on R) but sometimes things behave differently than an R programmer might expect. For example, the R code: y <- apply(iris[,1:4],2,sum)y produces the following result: sepal.length sepal.width petal.length petal.width 876.5    458.6 563.7  179.9 now, let's see how things work in h2o, code loads h2o package, starts a local instance of uploads iris data set into from r package and produces very r-like summary. library(h2o) # load library localh2o =h2o.init() initial locl instance # upload file instance iris.hex >

Read the original blog entry...

More Stories By David Smith

David Smith is Vice President of Marketing and Community at Revolution Analytics. He has a long history with the R and statistics communities. After graduating with a degree in Statistics from the University of Adelaide, South Australia, he spent four years researching statistical methodology at Lancaster University in the United Kingdom, where he also developed a number of packages for the S-PLUS statistical modeling environment. He continued his association with S-PLUS at Insightful (now TIBCO Spotfire) overseeing the product management of S-PLUS and other statistical and data mining products.<

David smith is the co-author (with Bill Venables) of the popular tutorial manual, An Introduction to R, and one of the originating developers of the ESS: Emacs Speaks Statistics project. Today, he leads marketing for REvolution R, supports R communities worldwide, and is responsible for the Revolutions blog. Prior to joining Revolution Analytics, he served as vice president of product management at Zynchros, Inc. Follow him on twitter at @RevoDavid

IoT & Smart Cities Stories
In this Women in Technology Power Panel at 15th Cloud Expo, moderated by Anne Plese, Senior Consultant, Cloud Product Marketing at Verizon Enterprise, Esmeralda Swartz, CMO at MetraTech; Evelyn de Souza, Data Privacy and Compliance Strategy Leader at Cisco Systems; Seema Jethani, Director of Product Management at Basho Technologies; Victoria Livschitz, CEO of Qubell Inc.; Anne Hungate, Senior Director of Software Quality at DIRECTV, discussed what path they took to find their spot within the tec...
To Really Work for Enterprises, MultiCloud Adoption Requires Far Better and Inclusive Cloud Monitoring and Cost Management … But How? Overwhelmingly, even as enterprises have adopted cloud computing and are expanding to multi-cloud computing, IT leaders remain concerned about how to monitor, manage and control costs across hybrid and multi-cloud deployments. It’s clear that traditional IT monitoring and management approaches, designed after all for on-premises data centers, are falling short in ...
DXWordEXPO New York 2018, colocated with CloudEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
Discussions of cloud computing have evolved in recent years from a focus on specific types of cloud, to a world of hybrid cloud, and to a world dominated by the APIs that make today's multi-cloud environments and hybrid clouds possible. In this Power Panel at 17th Cloud Expo, moderated by Conference Chair Roger Strukhoff, panelists addressed the importance of customers being able to use the specific technologies they need, through environments and ecosystems that expose their APIs to make true ...
"Space Monkey by Vivent Smart Home is a product that is a distributed cloud-based edge storage network. Vivent Smart Home, our parent company, is a smart home provider that places a lot of hard drives across homes in North America," explained JT Olds, Director of Engineering, and Brandon Crowfeather, Product Manager, at Vivint Smart Home, in this SYS-CON.tv interview at @ThingsExpo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
We are seeing a major migration of enterprises applications to the cloud. As cloud and business use of real time applications accelerate, legacy networks are no longer able to architecturally support cloud adoption and deliver the performance and security required by highly distributed enterprises. These outdated solutions have become more costly and complicated to implement, install, manage, and maintain.SD-WAN offers unlimited capabilities for accessing the benefits of the cloud and Internet. ...
Business professionals no longer wonder if they'll migrate to the cloud; it's now a matter of when. The cloud environment has proved to be a major force in transitioning to an agile business model that enables quick decisions and fast implementation that solidify customer relationships. And when the cloud is combined with the power of cognitive computing, it drives innovation and transformation that achieves astounding competitive advantage.
In an era of historic innovation fueled by unprecedented access to data and technology, the low cost and risk of entering new markets has leveled the playing field for business. Today, any ambitious innovator can easily introduce a new application or product that can reinvent business models and transform the client experience. In their Day 2 Keynote at 19th Cloud Expo, Mercer Rowe, IBM Vice President of Strategic Alliances, and Raejeanne Skillern, Intel Vice President of Data Center Group and G...
DXWorldEXPO LLC announced today that "IoT Now" was named media sponsor of CloudEXPO | DXWorldEXPO 2018 New York, which will take place on November 11-13, 2018 in New York City, NY. IoT Now explores the evolving opportunities and challenges facing CSPs, and it passes on some lessons learned from those who have taken the first steps in next-gen IoT services.
The current age of digital transformation means that IT organizations must adapt their toolset to cover all digital experiences, beyond just the end users’. Today’s businesses can no longer focus solely on the digital interactions they manage with employees or customers; they must now contend with non-traditional factors. Whether it's the power of brand to make or break a company, the need to monitor across all locations 24/7, or the ability to proactively resolve issues, companies must adapt to...