Welcome!

Java Authors: Carmen Gonzalez, Pat Romanski, Victoria Livschitz, Elizabeth White, Liz McMillan

Related Topics: Cloud Expo, Java, SOA & WOA, Virtualization, Security, Big Data Journal

Cloud Expo: Article

Encryption in Use Deep Dive

What you need to know to secure and control your data

Encryption in Use – Fact and Fiction
Risk-conscious enterprises across the globe have been reluctant to embrace the public cloud model. For many, compliance requirements are the source of the reluctance. For others, concerns about ceding control of their data to a cloud service provider, without the cloud service provider accepting liability for customer data, is the major hurdle. Conforming to data residency regulations, when implementing a distributed services model, present a further complication. Even as these challenges to adoption loom large, the economics and productivity benefits of cloud-based services remain compelling. For these organizations to make the transition to the cloud, a range of elements must be in place, including continuous monitoring of the cloud service provider’s data center, enforcement of appropriate service level agreements, data classification and definition of internal processes to manage cloud-based services.  Encryption in use is a critical piece of this puzzle, since it provides a mechanism for the enterprise to extend their boundary of control to their data stored and processed within the cloud service provider's environment. However, not all encryption in use is created equally, secure, and a generic. A one size fits all approach is likely to fall short in providing a balance between security and functionality.

The Case for Encryption in Use
For almost as long as the field of information security has been in existence, encryption of data at rest and encryption of data in transit have served as cornerstone technologies to prevent access to sensitive, proprietary, confidential or regulated data. Both forms of encryption operate through exchange and presentation of a combination of public and private keys that unlock the encrypted data. The great step forward for modern cryptography was the idea that the key that you use to encrypt your data could be made public while the key that is used to decrypt your data could be kept private. The purpose of both is to ensure that only users or systems with access to the key could access the data.

Encryption in use provides functionality that is almost counter-intuitive to the purpose behind modern encryption for data at rest and data in transit, working to ensure that the data remains in an encrypted state, even as users interact with the data, performing operations like search or sort, for example. However, just like encryption for other states of data, encryption in use serves a clear need. Without encryption in use, organizations cannot retain ownership and control of their data stored and processed in a cloud-based service – whether control is required to address security, compliance, data residency, privacy or governance needs. Encryption in use is similar to format preserving encryption in that it is applied in real time, but allows for a far broader range of cloud service functionality and feature support.

Encryption in use enables enterprises to independently secure their data stored and processed at cloud service providers – while holding on to the encryption keys. The ongoing revelations of government surveillance that are supported by laws compelling cloud service providers to hand over customer data, highlight the challenge that end users face of meeting their obligations to retain direct control of their cloud data.  The recent set of recommendations from the Review Group on Intelligence and Communications Technologies appointed by the White House focused on implementing better privacy steps is only the first step in revisiting policies.

Because encryption in use is an emerging area, the technology can be easily misunderstood, or even easily misrepresented. Typically, encryption in use entails the use of a gateway, or proxy, architecture. The user accesses the application via the gateway – whether the application server is in the cloud or on premise.  The key to decrypt the data resides in the gateway (or in an integrated HSM), ensuring that data stored and processed at the server is persistently encrypted, even as the encryption is entirely transparent to the user. Were the user to access the server directly, bypassing the gateway, the data would simply appear as a string of encrypted gibberish.  As long as the gateway remains under the data owner’s control, only authorized users can gain access to the data stored and processed at the cloud service provider, or other third party.

In the event that the cloud service provider is required to hand over customer data in response to a government subpoena, they must their meet their legal obligation. However, if encryption in use has been implemented, the service provider can only hand over encrypted gibberish. The request for data must then be directed to the entity that holds the encryption keys. Likewise, a rogue administrator, a hacker or government entity would only be able view unintelligible gibberish if they gained access to the user account.

Not Some Kind of Magic
In order to deliver on the promise of encryption in use, the gateway must deliver on a robust set of functionality requirements: comprehensive service functionality and water-tight security based on a strong encryption scheme. What this means in practical terms is that the entirety of the service’s functional elements and behavior must be mapped, and that the encryption scheme must allow for preserving functionality without compromising security. This is because the gateway must recreate the session for the cloud-facing leg, and transpose encrypted data into the flow without disrupting functionality like search, sort and index.  Otherwise, the user experience is degraded, and the value proposition of the cloud-based service of improving productivity is undermined.

Vendors face another set of choices: take shortcuts to cover as much ground to provide a superficial sense of security, or invest in extensive R&D work to deliver the optimal balance between functionality and strong security. For instance, vendors can opt to provide encryption for a just a few data fields, out of hundreds or even a few thousand, to encompass a specific subset of the enterprise’s information. Equally, they can choose to implement a cloud data encryption scheme that preserves features relying on referential integrity such as sort, search and index that is easily reversible by attackers.

By way of illustration, if the scheme involves deterministically encrypting words into very short AES blocks, the encoding pattern is consistent enough for common attacks to yield clear text from what might appear to be encrypted text. There are a variety of iterative attacks such as chosen plaintext attacks that will yield clear text if the encryption relies on a simplistic and consistent encoding pattern. So while the data may appear to be encrypted, and less engineering resources are required to support application features and functionality, the data protection in place is barely skin deep.

Encryption in use is not a kind of magic – it requires dedicated engineering expertise, with collaboration between infrastructure, information security and encryption experts. And, the encryption scheme must be tailored to a specific application or service to deliver on the appropriate balance of security and functionality.

Another significant consideration is evaluating encryption in use in the context of a specific application or service. From the customer’s perspective, it is appealing to use a single encryption platform for multiple applications. No customer wants to have to manage multiple appliances, management interfaces and vendors. The reality, however, is that to strike an acceptable balance for any risk conscious organization between security and functionality requires deep application knowledge and encryption-in-use expertise. Dig a little deeper on degree of support, or risk a gamble on production readiness. The degree of support is as critical as the extent of support.

Evaluating Encryption in Use Claims
Can enterprises rely on a standard validation for encryption in use? Precisely because encryption in use is a new area, third-party validation is a critical requirement before it is implemented in production environments. Unfortunately, the current set of standard validation and certification tests have limited applicability.

The most frequently cited third-party validation by vendors in the space is FIPS 140-2 validation. As critical as 140-2 validation is as an evaluation benchmark, and specifically required under some federal procurement mandates, it has some limitations for encryption in use.

Taking a step backward, its important to note the scope of FIPS validation. The process essentially verifies that the algorithms are implemented according to defined specifications. However, it does not provide any validation about how the platform would use the cryptographic module in order to support encryption in use.

For instance, the FIPS validation doesn't outline a set of best practices on how to use the cryptographic module. Instead, it verifies that whenever the system invokes AES encryption, the module performs AES encryption according to the standard specification.  FIPS validation is limited to the cryptographic modules used, not the overall integrity of the platform, or the encryption scheme used in production environments. While FIPS validation is an important consideration, enterprises should be aware of its limitations as the sole third party validation for encryption. In an outside world example, validation would demonstrate that a $500 bicycle lock is impervious to any lock picking attempts, but when used to lock a bike to a fire hydrant, it does nothing to protect the bike from a thief simply lifting the bike up and driving away.

Hopefully this has been useful in helping you to determine the right approach your organization can take to secure and maintain control of your data. I look forward to hearing any further points I might have missed.

More Stories By Elad Yoran

Elad is Chairman and CEO of cloud encryption company, Vaultive. His nearly 20 years in the cyber security industry spans experience as an executive, consultant, investor, investment banker and a several-time successful entrepreneur. Elad’s entrepreneurial experience includes Riptech, the pioneering provider of managed security services to governments and Fortune 500 corporations around the world, acquired by Symantec Corporation, Sentrigo, a leading provider of database security recently acquired by McAfee, and MediaSentry, a provider of anti-piracy technology solutions to the motion picture, music and software industries, acquired by SafeNet. Elad has also served as Vice President, Global Business Development at Symantec and as Vice President at Broadview International (acquired by Jeffries), an investment bank focusing on mergers and acquisitions in the technology industry, where he led the firm’s information security practice. Elad has been recognized as “Entrepreneur of the Year” by Ernst & Young.

@ThingsExpo Stories
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.