Welcome!

Java IoT Authors: Liz McMillan, Pat Romanski, Elizabeth White, XebiaLabs Blog, Yeshim Deniz

Related Topics: SDN Journal, Java IoT, Linux Containers, Containers Expo Blog, @CloudExpo, Cloud Security

SDN Journal: Blog Post

What SDN Can Do for Multicast Topologies

IP Multicast is one of those technologies that most everyone loves to hate

IP Multicast is one of those technologies that most everyone loves to hate. It’s almost the perfect example of how complicated we have made networking. Getting IP Multicast to run depends on several protocols that are all somewhat intertwined or dependent on each, their relationship sometimes explicit, sometimes implicit.

Even trying to describe the basic operation is complicated.

When an application or service provides information using IP multicast, it simply starts sending it onto a specific multicast group. The multicast router for the subnet of the sender sees the incoming multicast packet and will initially have no forwarding information for that stream in its forwarding hardware. The packet is passed onto the CPU of that router, which will encapsulate this packet and send it towards a special multicast router designated the Rendez-vous Point (RP). When the RP has installed the multicast routes for this group, it will tell the multicast router on the sender’s segment to stop sending. When it does, this router installs its own multicast routes for the source tree (the tree specific to this sender) and the shared tree (the one towards the RP) without any outgoing interfaces, and the traffic is dropped at this first router. But, the network (well at least the part between the sender and the RP) is now aware of this multicast stream. And who is sending.

Now when we want to join this IP Multicast group, the first action is send an IGMP join out on the subnet you are attached to. The IP Multicast router that serves this subnet sees the join and determines where RP can be found. It takes the client join, and sends it towards the RP, using the unicast routing table as its guide. Every multicast router along the way registers that there is a listener on the interface this join came in on and passes it along towards the IP. All along this path, the unicast routing entry for the RP is used to create the tree towards the listener.

Once received by the RP, the shared tree and the source tree towards the sender have been joined. We have an end to end path between sender and receiver, with the RP in the middle of it all. All that is left is to send a join from the RP towards the router on the sender’s subnet to essentially tell it to start passing the actual multicast along the path towards the RP (the source tree), where the RP will then push it out onto the shared tree towards the destination. Voila, it’s as simple as that.

But wait, we are not done. Once the packets start to flow from source to destination, the multicast router closest to the destination will send another join message for this group, but this time towards the sender. It is only now that it can do this because those first few data packets actually indicate who the sender is. That join is passed router to router to router towards the router on the sender’s subnet, and once arrived, that router will now also start sending the multicast data along that path towards the receiver. The receiving subnet router sees that stream appearing and will now send a prune message onto the shared tree towards the RP, indicating it no longer needs the multicast stream through the RP.

If you are not familiar with IP Multicast and after reading the above are not confused, congratulations, your brain is very well wired for complex networking.

If you step away from how IGMP and PIM implement this today as above, the most fundamental of IP multicast topologies is that you need to build a forwarding tree that is rooted in the source, with the destinations as its leaves. At each intermediate node in the tree, the packets are replicated to its branches, therefore creating the least amount of duplication. And by using a tree, it is loop free, packets won’t swirl around the network bringing it to its knees.

The challenging part though is that the tree is based on the unicast forwarding topology. From a leaf on this tree towards the sender, each step is identical to how a unicast IP packet would be forwarded. The forwarding topologies are connected and dependent on each other. IP Multicast is built on top of a unicast routed infrastructure, and unicast routing changes can have dramatic impacts to the multicast forwarding topologies.

I mentioned here before that I once spent a wonderful 2 weeks in Delhi working on a network where surveillance cameras created an aggregate 8Gbit/sec worth of multicast data, with a requirement that any unicast change would have limited impact to these streams. Believe me, it is extremely hard to engineer and tune, and we had the luxury of hijacking a really large network night after night to simulate failures.

SDN based architectures have the opportunity to change all this. Multicast forwarding was designed the way it was designed to work on arbitrary network topologies, with random senders and receivers coming and going. It builds trees on the fly and on demand. For many networks, topologies are not arbitrary, and those applications that consume/produce lots of multicast do not have randomly placed senders and receivers that come and go as they please.  Many of them are well known or placed in fairly static and fixed topologies.

A controller with a global view of the network can create multicast topologies ahead of time. It knows all possible replication points and can create distribution trees among them. It can create different distribution trees for different multicast groups. It can create them independent of the unicast forwarding. It can calculate backup topologies in case portions of the tree fail. And it can do all of that guaranteeing there are no loops and optimal replication. When applications indicate their participation in specific multicast streams as senders or listeners to this controller, it can optimize very specifically based on those participants. The possibilities are endless.

We had a customer visit us yesterday that has very significant multicast needs and we walked him through some of these possibilities. He left with a huge smile on his face. And that smile on his face was not because he really liked what we built (even though he did), but it was because we showed him that if you remove legacy network thinking and constraints, networking can yet again be extremely exciting and creates solutions that he did not think were possible, in a fairly simple and straightforward way. And that, in turn, is truly exciting to us.

The post What SDN can do for Multicast Topologies appeared first on Plexxi.

Read the original blog entry...

More Stories By Marten Terpstra

Marten Terpstra is a Product Management Director at Plexxi Inc. Marten has extensive knowledge of the architecture, design, deployment and management of enterprise and carrier networks.

@ThingsExpo Stories
Businesses and business units of all sizes can benefit from cloud computing, but many don't want the cost, performance and security concerns of public cloud nor the complexity of building their own private clouds. Today, some cloud vendors are using artificial intelligence (AI) to simplify cloud deployment and management. In his session at 20th Cloud Expo, Ajay Gulati, Co-founder and CEO of ZeroStack, will discuss how AI can simplify cloud operations. He will cover the following topics: why clou...
"Dice has been around for the last 20 years. We have been helping tech professionals find new jobs and career opportunities," explained Manish Dixit, VP of Product and Engineering at Dice, in this SYS-CON.tv interview at 19th Cloud Expo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
More and more brands have jumped on the IoT bandwagon. We have an excess of wearables – activity trackers, smartwatches, smart glasses and sneakers, and more that track seemingly endless datapoints. However, most consumers have no idea what “IoT” means. Creating more wearables that track data shouldn't be the aim of brands; delivering meaningful, tangible relevance to their users should be. We're in a period in which the IoT pendulum is still swinging. Initially, it swung toward "smart for smar...
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform and how we integrate our thinking to solve complicated problems. In his session at 19th Cloud Expo, Craig Sproule, CEO of Metavine, demonstrated how to move beyond today's coding paradigm and sh...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life sett...
We are always online. We access our data, our finances, work, and various services on the Internet. But we live in a congested world of information in which the roads were built two decades ago. The quest for better, faster Internet routing has been around for a decade, but nobody solved this problem. We’ve seen band-aid approaches like CDNs that attack a niche's slice of static content part of the Internet, but that’s it. It does not address the dynamic services-based Internet of today. It does...
The WebRTC Summit New York, to be held June 6-8, 2017, at the Javits Center in New York City, NY, announces that its Call for Papers is now open. Topics include all aspects of improving IT delivery by eliminating waste through automated business models leveraging cloud technologies. WebRTC Summit is co-located with 20th International Cloud Expo and @ThingsExpo. WebRTC is the future of browser-to-browser communications, and continues to make inroads into the traditional, difficult, plug-in web ...
WebRTC is the future of browser-to-browser communications, and continues to make inroads into the traditional, difficult, plug-in web communications world. The 6th WebRTC Summit continues our tradition of delivering the latest and greatest presentations within the world of WebRTC. Topics include voice calling, video chat, P2P file sharing, and use cases that have already leveraged the power and convenience of WebRTC.
20th Cloud Expo, taking place June 6-8, 2017, at the Javits Center in New York City, NY, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy.
"We're a cybersecurity firm that specializes in engineering security solutions both at the software and hardware level. Security cannot be an after-the-fact afterthought, which is what it's become," stated Richard Blech, Chief Executive Officer at Secure Channels, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
The Internet of Things (IoT) promises to simplify and streamline our lives by automating routine tasks that distract us from our goals. This promise is based on the ubiquitous deployment of smart, connected devices that link everything from industrial control systems to automobiles to refrigerators. Unfortunately, comparatively few of the devices currently deployed have been developed with an eye toward security, and as the DDoS attacks of late October 2016 have demonstrated, this oversight can ...
Fact is, enterprises have significant legacy voice infrastructure that’s costly to replace with pure IP solutions. How can we bring this analog infrastructure into our shiny new cloud applications? There are proven methods to bind both legacy voice applications and traditional PSTN audio into cloud-based applications and services at a carrier scale. Some of the most successful implementations leverage WebRTC, WebSockets, SIP and other open source technologies. In his session at @ThingsExpo, Da...
Internet-of-Things discussions can end up either going down the consumer gadget rabbit hole or focused on the sort of data logging that industrial manufacturers have been doing forever. However, in fact, companies today are already using IoT data both to optimize their operational technology and to improve the experience of customer interactions in novel ways. In his session at @ThingsExpo, Gordon Haff, Red Hat Technology Evangelist, will share examples from a wide range of industries – includin...
Unless your company can spend a lot of money on new technology, re-engineering your environment and hiring a comprehensive cybersecurity team, you will most likely move to the cloud or seek external service partnerships. In his session at 18th Cloud Expo, Darren Guccione, CEO of Keeper Security, revealed what you need to know when it comes to encryption in the cloud.
We're entering the post-smartphone era, where wearable gadgets from watches and fitness bands to glasses and health aids will power the next technological revolution. With mass adoption of wearable devices comes a new data ecosystem that must be protected. Wearables open new pathways that facilitate the tracking, sharing and storing of consumers’ personal health, location and daily activity data. Consumers have some idea of the data these devices capture, but most don’t realize how revealing and...
"We build IoT infrastructure products - when you have to integrate different devices, different systems and cloud you have to build an application to do that but we eliminate the need to build an application. Our products can integrate any device, any system, any cloud regardless of protocol," explained Peter Jung, Chief Product Officer at Pulzze Systems, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
Data is the fuel that drives the machine learning algorithmic engines and ultimately provides the business value. In his session at 20th Cloud Expo, Ed Featherston, director/senior enterprise architect at Collaborative Consulting, will discuss the key considerations around quality, volume, timeliness, and pedigree that must be dealt with in order to properly fuel that engine.
In addition to all the benefits, IoT is also bringing new kind of customer experience challenges - cars that unlock themselves, thermostats turning houses into saunas and baby video monitors broadcasting over the internet. This list can only increase because while IoT services should be intuitive and simple to use, the delivery ecosystem is a myriad of potential problems as IoT explodes complexity. So finding a performance issue is like finding the proverbial needle in the haystack.
According to Forrester Research, every business will become either a digital predator or digital prey by 2020. To avoid demise, organizations must rapidly create new sources of value in their end-to-end customer experiences. True digital predators also must break down information and process silos and extend digital transformation initiatives to empower employees with the digital resources needed to win, serve, and retain customers.