Welcome!

Java IoT Authors: Liz McMillan, Yeshim Deniz, Carmen Gonzalez, Elizabeth White, Pat Romanski

Related Topics: @BigDataExpo, Java IoT, Linux Containers, Agile Computing, @CloudExpo, Cloud Security

@BigDataExpo: Blog Post

In-Memory Database vs. In-Memory Data Grid By @GridGain | @CloudExpo [#BigData]

It's easy to start with technical differences between the two categories

A few months ago, I spoke at the conference where I explained the difference between caching and an in-memory data grid. Today, having realized that many people are also looking to better understand the difference between two major categories in in-memory computing: In-Memory Database and In-Memory Data Grid, I am sharing the succinct version of my thinking on this topic - thanks to a recent analyst call that helped to put everything in place :)

TL;DR

Skip to conclusion to get the bottom line.

Nomenclature
Let's clarify the naming and buzzwords first. In-Memory Database (IMDB) is a well-established category name and it is typically used unambiguously.

It is important to note that there is a new crop of traditional databases with serious In-Memory "options". That includes MS SQL 2014, Oracle's Exalytics and Exadata, and IBM DB2 with BLU offerings. The line is blurry between these and the new pure In-Memory Databases, and for the simplicity I'll continue to call them In-Memory Databases.

In-Memory Data Grids (IMDGs) are sometimes (but not very frequently) called In-Memory NoSQL/NewSQL Databases. Although the latter can be more accurate in some case - I am going to use the In-Memory Data Grid term in this article, as it tends to be the more widely used term.

Note that there are also In-Memory Compute Grids and In-Memory Computing Platforms that include or augment many of the features of In-Memory Data Grids and In-Memory Databases.

Confusing, eh? It is... and for consistency - going forward we'll just use these terms for the two main categories:

  • In-Memory Database
  • In-Memory Data Grid

Tiered Storage
It is also important to nail down what we mean by "In-Memory". Surprisingly - there's a lot of confusion here as well as some vendors refer to SSDs, Flash-on-PCI, Memory Channel Storage, and, of course, DRAM as "In-Memory".

In reality, most vendors support a Tiered Storage Model where some portion of the data is stored in DRAM (the fastest storage but with limited capacity) and then it gets overflown to a verity of flash or disk devices (slower but with more capacity) - so it is rarely a DRAM-only or Flash-only product. However, it's important to note that most products in both categories are often biased towards mostly DRAM or mostly flash/disk storage in their architecture.

Bottom line is that products vary greatly in what they mean by "In-Memory" but in the end they all have a significant "In-Memory" component.

Technical Differences
It's easy to start with technical differences between the two categories.

Most In-Memory Databases are your father's RDBMS that store data "in memory" instead of disk. That's practically all there's to it. They provide good SQL support with only a modest list of unsupported SQL features, shipped with ODBC/JDBC drivers and can be used in place of existing RDBMS often without significant changes.

In-Memory Data Grids typically lack full ANSI SQL support but instead provide MPP-based (Massively Parallel Processing) capabilities where data is spread across large cluster of commodity servers and processed in explicitly parallel fashion. The main access pattern is key/value access, MapReduce, various forms of HPC-like processing, and a limited distributed SQL querying and indexing capabilities.

It is important to note that there is a significant crossover from In-Memory Data Grids to In-Memory Databases in terms of SQL support. GridGain, for example, provides pretty serious and constantly growing support for SQL including pluggable indexing, distributed joins optimization, custom SQL functions, etc.

Speed Only vs. Speed + Scalability
One of the crucial differences between In-Memory Data Grids and In-Memory Databases lies in the ability to scale to hundreds and thousands of servers. That is the In-Memory Data Grid's inherent capability for such scale due to their MPP architecture, and the In-Memory Database's explicit inability to scale due to fact that SQL joins, in general, cannot be efficiently performed in a distribution context.

It's one of the dirty secrets of In-Memory Databases: one of their most useful features, SQL joins, is also is their Achilles heel when it comes to scalability. This is the fundamental reason why most existing SQL databases (disk or memory based) are based on vertically scalable SMP (Symmetrical Processing) architecture unlike In-Memory Data Grids that utilize the much more horizontally scalable MPP approach.

It's important to note that both In-Memory Data Grids and In-Memory Database can achieve similar speed in a local non-distributed context. In the end - they both do all processing in memory.

But only In-Memory Data Grids can natively scale to hundreds and thousands of nodes providing unprecedented scalability and unrivaled throughput.

Replace Database vs. Change Application
Apart from scalability, there is another difference that is important for uses cases where In-Memory Data Grids or In-Memory Database are tasked with speeding up existing systems or applications.

An In-Memory Data Grid always works with an existing database providing a layer of massively distributed in-memory storage and processing between the database and the application. Applications then rely on this layer for super-fast data access and processing. Most In-Memory Data Grids can seamlessly read-through and write-through from and to databases, when necessary, and generally are highly integrated with existing databases.

In exchange - developers need to make some changes to the application to take advantage of these new capabilities. The application no longer "talks" SQL only, but needs to learn how to use MPP, MapReduce or other techniques of data processing.

In-Memory Databases provide almost a mirror opposite picture: they often requirereplacing your existing database (unless you use one of those In-Memory "options" to temporary boost your database performance) - but will demand significantly less changes to the application itself as it will continue to rely on SQL (albeit a modified dialect of it).

In the end, both approaches have their advantages and disadvantages, and they may often depend in part on organizational policies and politics as much as on their technical merits.

Conclusion
The bottom line should be pretty clear by now.

If you are developing a green-field, brand new system or application the choice is pretty clear in favor of In-Memory Data Grids. You get the best of the two worlds: you get to work with the existing databases in your organization where necessary, and enjoy tremendous performance and scalability benefits of In-Memory Data Grids - both of which are highly integrated.

If you are, however, modernizing your existing enterprise system or application the choice comes down to this:

You will want to use an In-Memory Database if the following applies to you:

  • You can replace or upgrade your existing disk-based RDBMS
  • You cannot make changes to your applications
  • You care about speed, but don't care as much about scalability

In other words - you boost your application's speed by replacing or upgrading RDBMS without significantly touching the application itself.

On the other hand, you want to use an In-Memory Data Grid if the following applies to you:

  • You cannot replace your existing disk-based RDBMS
  • You can make changes to (the data access subsystem of) your application
  • You care about speed and especially about scalability, and don't want to trade one for the other

In other words - with an In-Memory Data Grid you can boost your application's speed and provide massive scale by tweaking the application, but without making changes to your existing database.

It can be summarized it in the following table:


In-Memory Data GridIn-Memory Database
Existing Application Changed Unchanged
Existing RDBMS Unchanged Changed or Replaced
Speed Yes Yes
Max. Scalability Yes No

More Stories By Nikita Ivanov

Nikita Ivanov is founder and CEO of GridGain Systems, started in 2007 and funded by RTP Ventures and Almaz Capital. Nikita has led GridGain to develop advanced and distributed in-memory data processing technologies – the top Java in-memory computing platform starting every 10 seconds around the world today.

Nikita has over 20 years of experience in software application development, building HPC and middleware platforms, contributing to the efforts of other startups and notable companies including Adaptec, Visa and BEA Systems. Nikita was one of the pioneers in using Java technology for server side middleware development while working for one of Europe’s largest system integrators in 1996.

He is an active member of Java middleware community, contributor to the Java specification, and holds a Master’s degree in Electro Mechanics from Baltic State Technical University, Saint Petersburg, Russia.

@ThingsExpo Stories
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life sett...
We are always online. We access our data, our finances, work, and various services on the Internet. But we live in a congested world of information in which the roads were built two decades ago. The quest for better, faster Internet routing has been around for a decade, but nobody solved this problem. We’ve seen band-aid approaches like CDNs that attack a niche's slice of static content part of the Internet, but that’s it. It does not address the dynamic services-based Internet of today. It does...
The WebRTC Summit New York, to be held June 6-8, 2017, at the Javits Center in New York City, NY, announces that its Call for Papers is now open. Topics include all aspects of improving IT delivery by eliminating waste through automated business models leveraging cloud technologies. WebRTC Summit is co-located with 20th International Cloud Expo and @ThingsExpo. WebRTC is the future of browser-to-browser communications, and continues to make inroads into the traditional, difficult, plug-in web ...
20th Cloud Expo, taking place June 6-8, 2017, at the Javits Center in New York City, NY, will feature technical sessions from a rock star conference faculty and the leading industry players in the world. Cloud computing is now being embraced by a majority of enterprises of all sizes. Yesterday's debate about public vs. private has transformed into the reality of hybrid cloud: a recent survey shows that 74% of enterprises have a hybrid cloud strategy.
WebRTC is the future of browser-to-browser communications, and continues to make inroads into the traditional, difficult, plug-in web communications world. The 6th WebRTC Summit continues our tradition of delivering the latest and greatest presentations within the world of WebRTC. Topics include voice calling, video chat, P2P file sharing, and use cases that have already leveraged the power and convenience of WebRTC.
"We're a cybersecurity firm that specializes in engineering security solutions both at the software and hardware level. Security cannot be an after-the-fact afterthought, which is what it's become," stated Richard Blech, Chief Executive Officer at Secure Channels, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
The Internet of Things (IoT) promises to simplify and streamline our lives by automating routine tasks that distract us from our goals. This promise is based on the ubiquitous deployment of smart, connected devices that link everything from industrial control systems to automobiles to refrigerators. Unfortunately, comparatively few of the devices currently deployed have been developed with an eye toward security, and as the DDoS attacks of late October 2016 have demonstrated, this oversight can ...
Fact is, enterprises have significant legacy voice infrastructure that’s costly to replace with pure IP solutions. How can we bring this analog infrastructure into our shiny new cloud applications? There are proven methods to bind both legacy voice applications and traditional PSTN audio into cloud-based applications and services at a carrier scale. Some of the most successful implementations leverage WebRTC, WebSockets, SIP and other open source technologies. In his session at @ThingsExpo, Da...
Internet-of-Things discussions can end up either going down the consumer gadget rabbit hole or focused on the sort of data logging that industrial manufacturers have been doing forever. However, in fact, companies today are already using IoT data both to optimize their operational technology and to improve the experience of customer interactions in novel ways. In his session at @ThingsExpo, Gordon Haff, Red Hat Technology Evangelist, will share examples from a wide range of industries – includin...
Unless your company can spend a lot of money on new technology, re-engineering your environment and hiring a comprehensive cybersecurity team, you will most likely move to the cloud or seek external service partnerships. In his session at 18th Cloud Expo, Darren Guccione, CEO of Keeper Security, revealed what you need to know when it comes to encryption in the cloud.
We're entering the post-smartphone era, where wearable gadgets from watches and fitness bands to glasses and health aids will power the next technological revolution. With mass adoption of wearable devices comes a new data ecosystem that must be protected. Wearables open new pathways that facilitate the tracking, sharing and storing of consumers’ personal health, location and daily activity data. Consumers have some idea of the data these devices capture, but most don’t realize how revealing and...
"We build IoT infrastructure products - when you have to integrate different devices, different systems and cloud you have to build an application to do that but we eliminate the need to build an application. Our products can integrate any device, any system, any cloud regardless of protocol," explained Peter Jung, Chief Product Officer at Pulzze Systems, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
Data is the fuel that drives the machine learning algorithmic engines and ultimately provides the business value. In his session at 20th Cloud Expo, Ed Featherston, director/senior enterprise architect at Collaborative Consulting, will discuss the key considerations around quality, volume, timeliness, and pedigree that must be dealt with in order to properly fuel that engine.
In addition to all the benefits, IoT is also bringing new kind of customer experience challenges - cars that unlock themselves, thermostats turning houses into saunas and baby video monitors broadcasting over the internet. This list can only increase because while IoT services should be intuitive and simple to use, the delivery ecosystem is a myriad of potential problems as IoT explodes complexity. So finding a performance issue is like finding the proverbial needle in the haystack.
According to Forrester Research, every business will become either a digital predator or digital prey by 2020. To avoid demise, organizations must rapidly create new sources of value in their end-to-end customer experiences. True digital predators also must break down information and process silos and extend digital transformation initiatives to empower employees with the digital resources needed to win, serve, and retain customers.
"Once customers get a year into their IoT deployments, they start to realize that they may have been shortsighted in the ways they built out their deployment and the key thing I see a lot of people looking at is - how can I take equipment data, pull it back in an IoT solution and show it in a dashboard," stated Dave McCarthy, Director of Products at Bsquare Corporation, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA.
Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more business becomes digital the more stakeholders are interested in this data including how it relates to business. Some of these people have never used a monitoring tool before. They have a question on their mind like “How is my application doing” but no id...
@GonzalezCarmen has been ranked the Number One Influencer and @ThingsExpo has been named the Number One Brand in the “M2M 2016: Top 100 Influencers and Brands” by Onalytica. Onalytica analyzed tweets over the last 6 months mentioning the keywords M2M OR “Machine to Machine.” They then identified the top 100 most influential brands and individuals leading the discussion on Twitter.
As data explodes in quantity, importance and from new sources, the need for managing and protecting data residing across physical, virtual, and cloud environments grow with it. Managing data includes protecting it, indexing and classifying it for true, long-term management, compliance and E-Discovery. Commvault can ensure this with a single pane of glass solution – whether in a private cloud, a Service Provider delivered public cloud or a hybrid cloud environment – across the heterogeneous enter...