Welcome!

Java IoT Authors: Pat Romanski, Dana Gardner, Elizabeth White, Liz McMillan, Tim Hinds

Related Topics: @CloudExpo, Java IoT, Microservices Expo, Linux Containers, Containers Expo Blog, Cloud Security

@CloudExpo: Article

Real-Time Fraud Detection in the Cloud

Using machine learning agent ensembles

This article explores how to detect fraud among online banking customers in real-time by running an ensemble of statistical and machine learning algorithms on a dataset of customer transactions and demographic data. The algorithms, namely Logistic Regression, Self-Organizing Maps and Support Vector Machines, are operationalized using a multi-agent framework for real-time data analysis. This article also explores the cloud environment for real-time analytics by deploying the agent framework in a cloud environment that meets computational demands by letting users' provision virtual machines within managed data centers, freeing them from the worry of acquiring and setting up new hardware and networks.

Real-time decision making is becoming increasingly valuable with the advancement of data collection and analytics techniques. Due to the increase in the speed of processing, the classical data warehousing model is moving toward a real-time model. A platform that enables the rapid development and deployment of applications, reducing the lag between data acquisition and actionable insight has become of paramount importance in the corporate world. Such a system can be used for the classic case of deriving information from data collected in the past and also to have a real-time engine that reacts to events as they occur. Some examples of such applications include:

  • A product company can get real-time feedback for their new releases using data from social media
  • Algorithmic trading by reacting in real times to fluctuations in stock prices
  • Real-time recommendations for food and entertainment based on a customer's location
  • Traffic signal operations based on real-time information of volume of traffic
  • E-commerce websites can detect a customer transaction being authentic or fraudulent in real-time

A cloud-based ecosystem enables users to build an application that detects, in real-time, fraudulent customers based on their demographic information and financial history. Multiple algorithms are utilized to detect fraud and the output is aggregated to improve prediction accuracy.

The dataset used to demonstrate this application comprises of various customer demographic variables and financial information such as age, residential address, office address, income type, income frequency, bankruptcy filing status, etc. The dependent variable (the variable to be predicted) is called "bad", which is a binary variable taking the value 0 (for not fraud) or 1 (for fraud).

Using Cloud for Effective Usage of Resources
A system that allows the development of applications capable of churning out results in real-time has multiple services running in tandem and is highly resource intensive. By deploying the system in the cloud, maintenance and load balancing of the system can be handled efficiently. It will also give the user more time to focus on application development. For the purpose of fraud detection, the active components, for example, include:

  • ActiveMQ
  • Web services
  • PostgreSQL

This approach combines the strengths and synergies of both cloud computing and machine learning technologies, providing a small company or even a startup that is unlikely to have specialized staff and necessary infrastructure for what is a computationally intensive approach, the ability to build a system that make decisions based on historical transactions.

Agent Paradigm
As multiple algorithms are to be run on the same data, a real-time agent paradigm is chosen to run these algorithms. An agent is an autonomous entity that may expect inputs and send outputs after performing a set of instructions. In a real-time system, these agents are wired together with directed connections to form an agency. An agent typically has two behaviors, cyclic and triggered. Cyclic agents, as the name suggests, run continuously in a loop and do not need any input. These are usually the first agents in an agency and are used for streaming data to the agency by connecting to an external real-time data source. A triggered agent runs every time it receives a message from a cyclic agent or another triggered agent. Once it consumes one message, it waits for the next message to arrive.

Figure 1: A simple agency with two agents

In Figure 1, Agent 1 is a cyclic agent while Agent 2 is a triggered agent. Agent 1 finishes its computation and sends a message to Agent 2, which uses the message as an input for further computation.

Feature Selection and Data Treatment
The dataset used for demonstrating fraud detection agency has 250 variables (features) pertaining to the demographic and financial history of the customers. To reduce the number of features, a Random Forest run was conducted on the dataset to obtain variable importance. Next, the top 30 variables were selected based on the variable importance. This reduced dataset was used for running a list of classification algorithms.

Algorithms for Fraud Detection
The fraud detection problem is a binary classification problem for which we have chosen three different algorithms to classify the input data into fraud (1) and not fraud (0). Each algorithm is configured as a triggered agent for our real-time system.

Logistic Regression
This is a probabilistic classification model where the dependent variable (the variable to be predicted) is a binary variable or a categorical variable. In case of binary dependent variables favorable outcomes are represented as 1 and non-favorable outcomes are represented as 0. Logistic regression models the probability of the dependent variable taking the value 0 or 1.

For the fraud detection problem, the dependent variable "bad" is modelled to give probabilities to each customer of being fraud or not. The equation takes multiple variables as input and returns a value between 0 & 1 which is the probability of "bad" being 0. If this value is greater than 0.7, then that customer is classified as not fraud.

Self-Organizing Maps (SOM)
This is an artificial neural network that uses unsupervised learning to represent the data in lower (typically two dimensions) dimensions. This representation of the input data in lower dimensions is called a map. Like most artificial neural networks, SOMs operate in two modes: training and mapping. "Training" builds the map using input examples, while "mapping" automatically classifies a new input vector.

For the fraud detection problem, the input space which is a fifty dimensional space is mapped to a two dimensional lattice of nodes. The training is done using data from the recent past and the new data is mapped using the trained model, which puts it either in the "fraud" cluster or "not - fraud" cluster.

Figure 2: x is an in-put vector in higher dimension, discretized in 2D using wij as the weight matrix
Image Source: http://www.lohninger.com/helpcsuite/kohonen_network_-_background_information.htm

Support Vector Machines (SVM)
This is a supervised learning technique used generally for classifying data. It needs a training dataset where the data is already classified into the required categories. It creates a hyperplane or set of hyperplanes that can be used for classification. The hyperplane is chosen such that it separates the different classes and the margin between the samples in the training set is widest.

For the fraud detection problem, SVM classifies the data points into two classes. The hyperplane is chosen by training the model over the past data. Using the variable "bad", the clusters are labeled as "0" (fraud) and "1" (not fraud). The new data points are classified using the hyperplane obtained while training.

Figure 3: Of the three hyperplanes which segment the data, H2 is the hyperplane which classifies the data accurately

Image Source: http://en.wikipedia.org/wiki/File:Svm_separating_hyperplanes.png

Fraud Detection Agency
A four-tier agency is created to build a workflow process for fraud detection.

Streamer Agent (Tier 1): This agent streams data in real-time to agents in Tier 2. It is the first agent in the agency and its behavior is cyclic. It connects to a real-time data source, pre-processes the data and sends it to the agents in the next layer.

Algorithm Agents (Tier 2): This tier has multiple agents running an ensemble of algorithms with one agent per algorithm. Each agent receives the message from the streamer agent and uses a pre-trained (trained on historical data) model for scoring.

Collator Agent (Tier 3): This agent receives scores from agents in Tier 2 and generates a single score by aggregating the scores. It then converts the score into an appropriate JSON format and sends it to an UI agent for consumption.

User Interface Agent (Tier 4): This agent pushes the messages it receives to a socket server. Any external socket client can be used to consume these messages.

Figure 4: The Fraud detection agency with agents in each layer. The final agent is mapped to a port to which a socket client can connect

Results and Model Validation
The models were trained on 70% of the data and the remaining 30% of the data was streamed to the above agency simulating a real-time data source.

Under-sample: The ratio of number of 0s to the number of 1s in the original dataset for the variable "bad" is 20:1. This would lead to biasing the models towards 0. To overcome this, we sample the training dataset by under-sampling the number of 0s to maintain the ration at 10:1.

The final output of the agency is the classification of the input as fraudulent or not. Since the value for the variable "bad" is already known for this data, it helps us gauge the accuracy of the aggregated model.

Figure 5: Accuracy for detecting fraud ("bad"=1) for different sampling ratio between no.of 0s and no. of 1s in the training dataset

Conclusion
Fraud detection can be improved by running an ensemble of algorithms in parallel and aggregating the predictions in real-time. This entire end-to-end application was designed and deployed in three working days. This shows the power of a system that enables easy deployment of real-time analytics applications. The work flow becomes inherently parallel as these agents run as separate processes communicating with each other. Deploying this in the cloud makes it horizontally scalable owing to effective load balancing and hardware maintenance. It also provides higher data security and makes the system fault tolerant by making processes mobile. This combination of a real-time application development system and a cloud-based computing enables even non-technical teams to rapidly deploy applications.

References

  • Gravic Inc, "The Evolution of Real-Time Business Intelligence", "http://www.gravic.com/shadowbase/pdf/white-papers/Shadowbase-for-Real-Time-Business-Intelligence.pdf"
  • Bernhard Schlkopf, Alexander J. Smola ( 2002), "Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond (Adaptive Computation and Machine Learning)", MIT Press​
  • Christopher Burges (1998), "A Tutorial on Support Vector Machines for Pattern Recognition", Data Mining and Knowledge Discovery, Kluwer Publishers
  • Kohonen, T. (Sep 1990), "The self-organizing map", Proceedings of IEEE
  • Samuel Kaski (1997), "Data Exploration Using Self-Organizing Maps", ACTA POLYTECHNICA SCANDINAVICA: MATHEMATICS, COMPUTING AND MANAGEMENT IN ENGINEERING SERIES NO. 82,
  • Rokach, L. (2010). "Ensemble based classifiers". Artificial Intelligence Review
  • Robin Genuer, Jean-Michel Poggi, Christine Tuleau-Malot, "Variable Selection using Random Forests", http://robin.genuer.fr/genuer-poggi-tuleau.varselect-rf.preprint.pdf

More Stories By Roger Barga

Roger Barga, PhD, is Group Program Manager for the CloudML team at Microsoft Corporation where his team is building machine learning as a service on the cloud. He is also a lecturer in the Data Science program at the University of Washington. Roger joined Microsoft in 1997 as a Researcher in the Database Group of Microsoft Research (MSR), where he was involved in a number of systems research projects and product incubation efforts, before joining the Cloud and Enterprise Division of Microsoft in 2011.

More Stories By Avinash Joshi

Avinash Joshi is a Senior Research Analyst in the Innovation and Development group of Mu Sigma Business Solutions. He is currently part of a team that works on generating insights from real-time data streams in financial markets. Avinash joined this team in 2011 and has interests ranging from marketing mix modeling to algorithmic trading.

More Stories By Pravin Venugopal

Pravin Venugopal is a Senior Research Analyst in the Innovation and Development group of Mu Sigma Business Solutions. He is currently part of a team that is developing a low latency platform for algorithmic trading. Pravin received his Masters degree in Computer Science and has been a part of Mu Sigma since 2012. His interests include analyzing real-time financial data streams and algorithmic trading.

Comments (1)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
Artificial Intelligence has the potential to massively disrupt IoT. In his session at 18th Cloud Expo, AJ Abdallat, CEO of Beyond AI, will discuss what the five main drivers are in Artificial Intelligence that could shape the future of the Internet of Things. AJ Abdallat is CEO of Beyond AI. He has over 20 years of management experience in the fields of artificial intelligence, sensors, instruments, devices and software for telecommunications, life sciences, environmental monitoring, process...
SYS-CON Events announced today that Ericsson has been named “Gold Sponsor” of SYS-CON's @ThingsExpo, which will take place on June 7-9, 2016, at the Javits Center in New York, New York. Ericsson is a world leader in the rapidly changing environment of communications technology – providing equipment, software and services to enable transformation through mobility. Some 40 percent of global mobile traffic runs through networks we have supplied. More than 1 billion subscribers around the world re...
SYS-CON Events announced today that Stratoscale, the software company developing the next generation data center operating system, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Stratoscale is revolutionizing the data center with a zero-to-cloud-in-minutes solution. With Stratoscale’s hardware-agnostic, Software Defined Data Center (SDDC) solution to store everything, run anything and scale everywhere...
Angular 2 is a complete re-write of the popular framework AngularJS. Programming in Angular 2 is greatly simplified – now it's a component-based well-performing framework. This immersive one-day workshop at 18th Cloud Expo, led by Yakov Fain, a Java Champion and a co-founder of the IT consultancy Farata Systems and the product company SuranceBay, will provide you with everything you wanted to know about Angular 2.
SYS-CON Events announced today that Men & Mice, the leading global provider of DNS, DHCP and IP address management overlay solutions, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. The Men & Mice Suite overlay solution is already known for its powerful application in heterogeneous operating environments, enabling enterprises to scale without fuss. Building on a solid range of diverse platform support,...
In his session at @ThingsExpo, Chris Klein, CEO and Co-founder of Rachio, will discuss next generation communities that are using IoT to create more sustainable, intelligent communities. One example is Sterling Ranch, a 10,000 home development that – with the help of Siemens – will integrate IoT technology into the community to provide residents with energy and water savings as well as intelligent security. Everything from stop lights to sprinkler systems to building infrastructures will run ef...
You deployed your app with the Bluemix PaaS and it's gaining some serious traction, so it's time to make some tweaks. Did you design your application in a way that it can scale in the cloud? Were you even thinking about the cloud when you built the app? If not, chances are your app is going to break. Check out this webcast to learn various techniques for designing applications that will scale successfully in Bluemix, for the confidence you need to take your apps to the next level and beyond.
Manufacturers are embracing the Industrial Internet the same way consumers are leveraging Fitbits – to improve overall health and wellness. Both can provide consistent measurement, visibility, and suggest performance improvements customized to help reach goals. Fitbit users can view real-time data and make adjustments to increase their activity. In his session at @ThingsExpo, Mark Bernardo Professional Services Leader, Americas, at GE Digital, will discuss how leveraging the Industrial Interne...
Whether your IoT service is connecting cars, homes, appliances, wearable, cameras or other devices, one question hangs in the balance – how do you actually make money from this service? The ability to turn your IoT service into profit requires the ability to create a monetization strategy that is flexible, scalable and working for you in real-time. It must be a transparent, smoothly implemented strategy that all stakeholders – from customers to the board – will be able to understand and comprehe...
Increasing IoT connectivity is forcing enterprises to find elegant solutions to organize and visualize all incoming data from these connected devices with re-configurable dashboard widgets to effectively allow rapid decision-making for everything from immediate actions in tactical situations to strategic analysis and reporting. In his session at 18th Cloud Expo, Shikhir Singh, Senior Developer Relations Manager at Sencha, will discuss how to create HTML5 dashboards that interact with IoT devic...
The increasing popularity of the Internet of Things necessitates that our physical and cognitive relationship with wearable technology will change rapidly in the near future. This advent means logging has become a thing of the past. Before, it was on us to track our own data, but now that data is automatically available. What does this mean for mHealth and the "connected" body? In her session at @ThingsExpo, Lisa Calkins, CEO and co-founder of Amadeus Consulting, will discuss the impact of wea...
There is an ever-growing explosion of new devices that are connected to the Internet using “cloud” solutions. This rapid growth is creating a massive new demand for efficient access to data. And it’s not just about connecting to that data anymore. This new demand is bringing new issues and challenges and it is important for companies to scale for the coming growth. And with that scaling comes the need for greater security, gathering and data analysis, storage, connectivity and, of course, the...
Digital payments using wearable devices such as smart watches, fitness trackers, and payment wristbands are an increasing area of focus for industry participants, and consumer acceptance from early trials and deployments has encouraged some of the biggest names in technology and banking to continue their push to drive growth in this nascent market. Wearable payment systems may utilize near field communication (NFC), radio frequency identification (RFID), or quick response (QR) codes and barcodes...
SYS-CON Events announced today that DatacenterDynamics has been named “Media Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY. DatacenterDynamics is a brand of DCD Group, a global B2B media and publishing company that develops products to help senior professionals in the world's most ICT dependent organizations make risk-based infrastructure and capacity decisions.
SYS-CON Events announced today TMCnet has been named “Media Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY, and the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Technology Marketing Corporation (TMC) is the world's leading business-to-business and integrated marketing media company, servicing niche markets within the com...
The IoT has the potential to create a renaissance of manufacturing in the US and elsewhere. In his session at 18th Cloud Expo, Florent Solt, CTO and chief architect of Netvibes, will discuss how the expected exponential increase in the amount of data that will be processed, transported, stored, and accessed means there will be a huge demand for smart technologies to deliver it. Florent Solt is the CTO and chief architect of Netvibes. Prior to joining Netvibes in 2007, he co-founded Rift Technol...
Join IBM June 8 at 18th Cloud Expo at the Javits Center in New York City, NY, and learn how to innovate like a startup and scale for the enterprise. You need to deliver quality applications faster and cheaper, attract and retain customers with an engaging experience across devices, and seamlessly integrate your enterprise systems. And you can't take 12 months to do it.
This is not a small hotel event. It is also not a big vendor party where politicians and entertainers are more important than real content. This is Cloud Expo, the world's longest-running conference and exhibition focused on Cloud Computing and all that it entails. If you want serious presentations and valuable insight about Cloud Computing for three straight days, then register now for Cloud Expo.
IoT device adoption is growing at staggering rates, and with it comes opportunity for developers to meet consumer demand for an ever more connected world. Wireless communication is the key part of the encompassing components of any IoT device. Wireless connectivity enhances the device utility at the expense of ease of use and deployment challenges. Since connectivity is fundamental for IoT device development, engineers must understand how to overcome the hurdles inherent in incorporating multipl...
Machine Learning helps make complex systems more efficient. By applying advanced Machine Learning techniques such as Cognitive Fingerprinting, wind project operators can utilize these tools to learn from collected data, detect regular patterns, and optimize their own operations. In his session at 18th Cloud Expo, Stuart Gillen, Director of Business Development at SparkCognition, will discuss how research has demonstrated the value of Machine Learning in delivering next generation analytics to im...