Welcome!

Java Authors: Victoria Livschitz, Pat Romanski, Carmen Gonzalez, Elizabeth White, Liz McMillan

Related Topics: Security, Java, SOA & WOA, Linux, Virtualization, Cloud Expo

Security: Blog Feed Post

Stronger Keys and Faster Security with ECC

Really fast crypto in software on commodity hardware is possible after all.

Anyone who has been involved with security knows there is a balance to providing both security and privacy and performance at the same time. Security is often blamed for performance woes, particularly when cryptography is involved.

SSL and TLS have long addressed this balance by leveraging custom-built hardware to enhance the performance of the most taxing components of these protocols: session setup. The "easy" part of securing communications (if one can use easy with respect to cryptography) is bulk encryption. While certainly more taxing on performance than clear text, relative to the more complex and compute intensive process of the handshaking required to set up such sessions, easy is an appropriate term.

Moore's Law is often cited as providing the increases in computer power necessary to offset the performance tax imposed by secure protocols. Unfortunately while this would be true if all other factors remained constant, the reality is that other factors are also changing and impose additional burdens on the protocol that often negate the gains made by Moore's Law. Key lengths, for example, continue to grow to combat the increase in compute power that makes it easier to brute-force crack a cryptographic key and new challenges with respect to privacy are changing the frequency with which those keys are generated.. There are also occasionally leaps in the mathematic realm that find ways to more quickly compute the “hard problem” that the cryptographic algorithm uses, but those are rare and don’t march at the steady pace that compute power increases do.

PFS (Perfect Forward Secrecy), for example, has been offered as a way to combat potential snooping by third-parties (read: governments) by requiring the generation of ephemeral (short lived) keys for each new session. This has the effect of imposing an extra cryptography tax" on communications over and above the already expensive handshaking process required by secure protocols like SSL.

Accompanying the introduction of PFS has been a move to take advantage of ECC (Elliptical Curve Cryptography). One of the primary benefits of ECC is that it can provide comparable security with shorter key lengths to RSA with longer key lengths. When you're generating ephemeral keys on a per-session or per-message basis, the shorter key length helps reduce the burden imposed by the additional cryptographic functions.

Now, the problem is that cryptography is still compute intense and even leveraging ECC for PFS you're still going to incur performance penalties in setting up the session. Certainly custom cryptographic hardware acceleration would be a boon, but in cases where software-only solutions are desired, this is problematic. So the question is, how do you support enhanced security with PFS and ECC while still achieving blazing fast performance and extreme capacity?

Obviously I'm about to tell you, so read on...

Next-Generation Cryptography

LineRate achieves what sounds like the impossible: really fast, really scalable secure communications in a software solution deployed on commodity hardware.

By combining a highly optimized network stack with the ability to reach down into some of the lesser known capabilities in commoditized hardware, LineRate is able to achieve up to 25,000 new SSL sessions per second on the same commodity Intel CPU on which only 6,000-8,000 new SSL sessions per second were achieved using RSA-based cryptography.

This remarkable feat is achievable through both focused engineering of the network stack and the use of a set of specialized instructions in the processor that are advantageous for the type of operations involved in ECC. These are not the same instructions as used in AES-NI, which is applicable to the easy part of SSL (bulk encryption) and aren't actually cryptography-specific instructions; they're just instructions that turn out to be really useful in speeding up the execution of certain computations associated with ECC.

What this means is organizations can now take advantage of stronger security and longer (ostensibly also stronger) keys without incurring significant lags in establishing sessions. That's critical, as the longer it takes to establish a session, the more likely it is that the end-user will abandon the entire interaction. The appearance of not loading or that the site (or app) has "hung up" due to the time incurred by establishing a secure session can be devastating to the customer quality of experience. Quality of experience is rapidly outpacing other key performance indicators as a measure of success as businesses move toward an application-based economy in which engagement is key to driving revenue and customer satisfaction. A 2012 survey conducted by LSI Corporation highlighted not only the critical nature of performance (90% of respondents acknowledge this), but the disturbing reality that a majority of them (75%) do not feel they are achieving required performance.

As we strengthen security to combat rising application and network attacks against protocols and applications themselves while simultaneously adopting emerging technologies and architectures designed to enable the next generation of data center networks, we must pay attention to the impact on application performance and capacity.

Software-based solutions can provide the agility and service velocity demanded and necessary to enabling the app economy, but without careful consideration for the impact on performance a move toward such architectures can result in much more costly, complex networks. LineRate's attention to both performance and security offer organizations a flexible, software-defined and software-deployable solution that scales with simplicity.

More Stories By Lori MacVittie

Lori MacVittie is responsible for education and evangelism of application services available across F5’s entire product suite. Her role includes authorship of technical materials and participation in a number of community-based forums and industry standards organizations, among other efforts. MacVittie has extensive programming experience as an application architect, as well as network and systems development and administration expertise. Prior to joining F5, MacVittie was an award-winning Senior Technology Editor at Network Computing Magazine, where she conducted product research and evaluation focused on integration with application and network architectures, and authored articles on a variety of topics aimed at IT professionals. Her most recent area of focus included SOA-related products and architectures. She holds a B.S. in Information and Computing Science from the University of Wisconsin at Green Bay, and an M.S. in Computer Science from Nova Southeastern University.

@ThingsExpo Stories
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.
SYS-CON Events announced today that Windstream, a leading provider of advanced network and cloud communications, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Windstream (Nasdaq: WIN), a FORTUNE 500 and S&P 500 company, is a leading provider of advanced network communications, including cloud computing and managed services, to businesses nationwide. The company also offers broadband, phone and digital TV services to consumers primarily in rural areas.