Click here to close now.


Java IoT Authors: Pat Romanski, Esmeralda Swartz, Elizabeth White, SmartBear Blog, Dana Gardner

Related Topics: Microservices Expo, Java IoT, Linux Containers, Containers Expo Blog, IoT User Interface, @BigDataExpo

Microservices Expo: Article

Understanding Application Performance on the Network | Part 2

Bandwidth and Congestion

When we think of application performance problems that are network-related, we often immediately think of bandwidth and congestion as likely culprits; faster speeds and less traffic will solve everything, right? This is reminiscent of recent ISP wars; which is better, DSL or cable modems? Cable modem proponents touted the higher bandwidth while DSL proponents warned of the dangers of sharing the network with your potentially bandwidth-hogging neighbors. In this blog entry, we'll examine these two closely-related constraints, beginning the series of performance analyses using the framework we introduced in Part I. I'll use graphics from Compuware's application-centric protocol analyzer - Transaction Trace - as illustrations.

We define bandwidth delay as the serialization delay encountered as bits are clocked out onto the network medium. Most important for performance analysis is what we refer to as the "bottleneck bandwidth" - the speed of the link at its slowest point - as this will be the primary influencer on the packet arrival rate at the destination. Each packet incurs the serialization delay dictated by the link speed; for example, at 4Mbps, a 1500 byte packet takes approximately 3 milliseconds to be serialized. Extending this bandwidth calculation to an entire operation is relatively straightforward. We observe (on the wire) the number of bytes sent or received and multiply that by 8 bits, then divide by the bottleneck link speed, understanding that asymmetric links may have different upstream and downstream speeds.

Bandwidth effect = [ [# bytes sent or received] x [8 bits] ]/ [Bottleneck link speed]

For example, we can calculate the bandwidth effect for an operation that sends 100KB and receives 1024KB on a 2048Kbps link:

  • Upstream effect: [100,000 * 8] / 2,048,000] = 390 milliseconds
  • Downstream effect: [1,024,000 *8] / 2,048,000] = 4000 milliseconds

For better precision, you should account for frame header size differences between the packet capture medium - Ethernet, likely - and the WAN link; this difference might be as much as 8 or 10 bytes per packet.

Bandwidth constraints impact only the data transfer periods within an operation - the request and reply flows. Each flow also incurs (at a minimum) additional delay due to network latency, as the first bit traverses the network from sender to receiver; TCP flow control or other factors may introduce further delays. (As an operation's chattiness increases, its sensitivity to network latency increases and the overall impact of bandwidth tends to decrease, becoming overshadowed by latency.)

Transaction Trace Illustration: Bandwidth
One way to frame the question is "does the operation use all of the available bandwidth?" The simplest way to visualize this is to graph throughput in each direction, comparing uni-directional throughput with the link's measured bandwidth. If the answer is yes, then the operation bottleneck is bandwidth; if the answer is no, then there is some other constraint limiting performance. (This doesn't mean that bandwidth isn't a significant, or even the dominant, constraint; it simply means that there are other factors that prevent the operation from reaching the bandwidth limitation. The formula we used to calculate the impact of bandwidth still applies as a definition of the contribution of bandwidth to the overall operation time.)

This FTP transfer is frequently limited by the 10Mbps available bandwidth.

Networks are generally shared resources; when there are multiple connections on a link, TCP flow control will prevent a single flow from using all of the available bandwidth as it detects and adjusts for congestion. We will evaluate the impact of congestion next, but fundamentally, the diagnosis is the same; bandwidth constrains throughput.

Congestion occurs when data arrives at a network interface at a rate faster than the media can service; when this occurs, packets must be placed in an output queue, waiting until earlier packets have been serviced. These queue delays add to the end-to-end network delay, with a potentially significant effect on both chatty and non-chatty operations. (Chatty operations will be impacted due to the increase in round-trip delay, while non-chatty operations may be impacted by TCP flow control and congestion avoidance algorithms.)

For a given flow, congestion initially reduces the rate of TCP slow-start's ramp by slowing increases to the sender's Congestion Window (CWD); it also adds to the delay component of the Bandwidth Delay Product (BDP), increasing the likelihood of exhausting the receiver's TCP window. (We'll discuss TCP slow-start as well as the BDP later in this series.)

As congestion becomes more severe, the queue in one of the path's routers may become full. As packets arrive exceeding the queue's storage capacity, some packets must be discarded. Routers employ various algorithms to determine which packets should be dropped, perhaps attempting to distribute congestion's impact among multiple connections, or to more significantly impact lower-priority traffic. When TCP detects these dropped packets (by a triple-duplicate ACK, for example), congestion is the assumed cause. As we will discuss in more depth in an upcoming blog entry, packet loss causes the sending TCP to reduce its Congestion Window by 50%, after which slow-start begins to ramp up again in a relatively conservative congestion avoidance phase.

For more on congestion, and for further insight, click here for the full article.

More Stories By Gary Kaiser

Gary Kaiser is a Subject Matter Expert in Network Performance Analysis at Compuware APM. He has global field enablement responsibilities for performance monitoring and analysis solutions embracing emerging and strategic technologies, including WAN optimization, thin client infrastructures, network forensics, and a unique performance management maturity methodology. He is also a co-inventor of multiple analysis features, and continues to champion the value of software-enabled expert network analysis.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

@ThingsExpo Stories
As more intelligent IoT applications shift into gear, they’re merging into the ever-increasing traffic flow of the Internet. It won’t be long before we experience bottlenecks, as IoT traffic peaks during rush hours. Organizations that are unprepared will find themselves by the side of the road unable to cross back into the fast lane. As billions of new devices begin to communicate and exchange data – will your infrastructure be scalable enough to handle this new interconnected world?
This week, the team assembled in NYC for @Cloud Expo 2015 and @ThingsExpo 2015. For the past four years, this has been a must-attend event for MetraTech. We were happy to once again join industry visionaries, colleagues, customers and even competitors to share and explore the ways in which the Internet of Things (IoT) will impact our industry. Over the course of the show, we discussed the types of challenges we will collectively need to solve to capitalize on the opportunity IoT presents.
SYS-CON Events announced today that Dyn, the worldwide leader in Internet Performance, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Dyn is a cloud-based Internet Performance company. Dyn helps companies monitor, control, and optimize online infrastructure for an exceptional end-user experience. Through a world-class network and unrivaled, objective intelligence into Internet conditions, Dyn ensures traffic gets delivered faster, safer, and more reliably than ever.
SYS-CON Events announced today that Sandy Carter, IBM General Manager Cloud Ecosystem and Developers, and a Social Business Evangelist, will keynote at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Events announced today that Super Micro Computer, Inc., a global leader in high-performance, high-efficiency server, storage technology and green computing, will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Supermicro (NASDAQ: SMCI), the leading innovator in high-performance, high-efficiency server technology is a premier provider of advanced server Building Block Solutions® for Data Center, Cloud Computing, Enterprise IT, Hadoop/Big Data, HPC and Embedded Systems worldwide. Supermi...
With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be! Internet of @ThingsExpo, taking place Nov 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 17th Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound change in personal an...
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data shows "less than 10 percent of IoT developers are making enough to support a reasonably sized team....
The IoT market is on track to hit $7.1 trillion in 2020. The reality is that only a handful of companies are ready for this massive demand. There are a lot of barriers, paint points, traps, and hidden roadblocks. How can we deal with these issues and challenges? The paradigm has changed. Old-style ad-hoc trial-and-error ways will certainly lead you to the dead end. What is mandatory is an overarching and adaptive approach to effectively handle the rapid changes and exponential growth.
Developing software for the Internet of Things (IoT) comes with its own set of challenges. Security, privacy, and unified standards are a few key issues. In addition, each IoT product is comprised of at least three separate application components: the software embedded in the device, the backend big-data service, and the mobile application for the end user's controls. Each component is developed by a different team, using different technologies and practices, and deployed to a different stack/target - this makes the integration of these separate pipelines and the coordination of software upd...
As a company adopts a DevOps approach to software development, what are key things that both the Dev and Ops side of the business must keep in mind to ensure effective continuous delivery? In his session at DevOps Summit, Mark Hydar, Head of DevOps, Ericsson TV Platforms, will share best practices and provide helpful tips for Ops teams to adopt an open line of communication with the development side of the house to ensure success between the two sides.
The IoT is upon us, but today’s databases, built on 30-year-old math, require multiple platforms to create a single solution. Data demands of the IoT require Big Data systems that can handle ingest, transactions and analytics concurrently adapting to varied situations as they occur, with speed at scale. In his session at @ThingsExpo, Chad Jones, chief strategy officer at Deep Information Sciences, will look differently at IoT data so enterprises can fully leverage their IoT potential. He’ll share tips on how to speed up business initiatives, harness Big Data and remain one step ahead by apply...
There will be 20 billion IoT devices connected to the Internet soon. What if we could control these devices with our voice, mind, or gestures? What if we could teach these devices how to talk to each other? What if these devices could learn how to interact with us (and each other) to make our lives better? What if Jarvis was real? How can I gain these super powers? In his session at 17th Cloud Expo, Chris Matthieu, co-founder and CTO of Octoblu, will show you!
Today air travel is a minefield of delays, hassles and customer disappointment. Airlines struggle to revitalize the experience. GE and M2Mi will demonstrate practical examples of how IoT solutions are helping airlines bring back personalization, reduce trip time and improve reliability. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Dr. Sarah Cooper, M2Mi's VP Business Development and Engineering, will explore the IoT cloud-based platform technologies driving this change including privacy controls, data transparency and integration of real time context w...
The Internet of Everything is re-shaping technology trends–moving away from “request/response” architecture to an “always-on” Streaming Web where data is in constant motion and secure, reliable communication is an absolute necessity. As more and more THINGS go online, the challenges that developers will need to address will only increase exponentially. In his session at @ThingsExpo, Todd Greene, Founder & CEO of PubNub, will explore the current state of IoT connectivity and review key trends and technology requirements that will drive the Internet of Things from hype to reality.
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Nowadays, a large number of sensors and devices are connected to the network. Leading-edge IoT technologies integrate various types of sensor data to create a new value for several business decision scenarios. The transparent cloud is a model of a new IoT emergence service platform. Many service providers store and access various types of sensor data in order to create and find out new business values by integrating such data.
There are so many tools and techniques for data analytics that even for a data scientist the choices, possible systems, and even the types of data can be daunting. In his session at @ThingsExpo, Chris Harrold, Global CTO for Big Data Solutions for EMC Corporation, will show how to perform a simple, but meaningful analysis of social sentiment data using freely available tools that take only minutes to download and install. Participants will get the download information, scripts, and complete end-to-end walkthrough of the analysis from start to finish. Participants will also be given the pract...
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome,” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
WebRTC services have already permeated corporate communications in the form of videoconferencing solutions. However, WebRTC has the potential of going beyond and catalyzing a new class of services providing more than calls with capabilities such as mass-scale real-time media broadcasting, enriched and augmented video, person-to-machine and machine-to-machine communications. In his session at @ThingsExpo, Luis Lopez, CEO of Kurento, will introduce the technologies required for implementing these ideas and some early experiments performed in the Kurento open source software community in areas ...
Electric power utilities face relentless pressure on their financial performance, and reducing distribution grid losses is one of the last untapped opportunities to meet their business goals. Combining IoT-enabled sensors and cloud-based data analytics, utilities now are able to find, quantify and reduce losses faster – and with a smaller IT footprint. Solutions exist using Internet-enabled sensors deployed temporarily at strategic locations within the distribution grid to measure actual line loads.