Welcome!

Java Authors: Carmen Gonzalez, Pat Romanski, Victoria Livschitz, Elizabeth White, Liz McMillan

Related Topics: Big Data Journal, Java, Linux, Web 2.0, Cloud Expo, SDN Journal

Big Data Journal: Blog Feed Post

Scaling Big Data Fabrics

The size of the network might be the least interesting aspect of scaling Big Data fabrics

When people talk about Big Data, the emphasis is usually on the Big. Certainly, Big Data applications are distributed largely because the size of the data on which computations are executed warrants more than a typical application can handle. But scaling the network that provides connectivity between Big Data nodes is not just about creating massive interconnects.

In fact, the size of the network might be the least interesting aspect of scaling Big Data fabrics.

Just how big is Big Data?

Not that long ago, I asked the question: how large is a typical Big Data deployment? I was expecting, as I suspect many people are, that the Big in the title meant that the deployments would be, in a word, big. But the average Big Data deployment is actually far smaller than most people realize. I grabbed a list from HadoopWizard in an article dating back to last year.

What is remarkable about this list is just how unremarkable the sizes of the deployments are. Sure, the list is dated, and deployments have certainly gotten larger. And yes, companies like Yahoo! are pushing scaling limits. But the average deployment if you take Yahoo! out is a mere 113 nodes. Even if every node is multi-homed to two switches, this means the average deployment could be handled by 4 access switches.

Even if every deployment quadrupled, you would still only be talking about 16-access-switch deployments. When our industry talks about scaling, we usually think well beyond 16 switches.

Is scaling an issue?

So if deployments are small, does that mean scaling is a solved issue? The answer is both yes and no. If the end game is building individual networks for each Big Data application, then yes. While the web scale companies will always need more, the vast majority of customers will be well-served by the scaling limits that are around today.

But the issue with Big Data is that it isn’t really just Big Data. When we talk about Big Data, we usually ought to be using a different moniker. For most people, Big Data is less about Hadoop and more about clustered applications (at least so far as the network is concerned). By expanding the definition to clustered applications, you move past Hadoop and into clustered compute and even clustered storage environments. Anything clustered has a dependency on some kind of interconnect.

The challenge in clustered environments

The challenge of all these types of clustered environments is that their requirements vary. For Hadoop, job completion times are dominated by the compute side of things, so the network is really about providing a congestion-free interconnect that is always available. For clustered compute, latency might be more important. And for multi-tenant environments, it might be most important to isolate traffic. Whatever the application, the point is that the requirements are highly contextual.

Which brings us back to scaling.

The real issue in scaling Big Data fabrics is less about making a small interconnect larger. Networks are not going to scale along the lines of single applications (or at least they shouldn’t). The actual scaling challenge is plotting a course from a single Big Data application to an environment that hosts multiple clustered applications, each with different requirements.

This might seem dead simple, but it isn’t. When people deploy Big Data applications today, the Big part leads people to purpose-build architecture with massive data workloads in mind. In many cases, this includes building out separate networks aimed at specific workloads.

But even in the best cases, Hadoop makes use of things like rack awareness, which help provide application resilience while minimizing traffic across the network. Regardless of whether you view this as for the application or for the network, the result is that proximity and locality are built into the infrastructure. This creates interesting considerations (and potentially limitations) when expanding. If you want to grow a cluster, you can’t just use any available server in the datacenter; there are servers that are more preferable than others based solely on their physical location.

Scalability is more than scaling

Making a scalable interconnect for these types of clustered applications is more than just supporting a large (or as I mentioned previously, not so large) number of nodes. The objective for scalability is to provide a graceful path from start to finish. This means architectures need to consider not just what the ending state is but also how to get from here to there.

With Hadoop, this means that things like locality have to be an explicit consideration in architecting the interconnect. Is the right answer a bunch of cross-connects zigzagging across the datacenter? Maybe. Or it might be a different architectural approach to providing interconnect between clustered servers.

Additionally, it isn’t just about one application. Architecting for bandwidth because you have a Hadoop-y application is great, but what if the next clustered application is latency-sensitive? Or if it brings with it a set of auditing and compliance requirements more typical of HIPAA-style applications?

If the architecture doesn’t explicitly consider how to expand beyond a single application, even if it can grow to thousands of switches, it won’t really matter.

The bottom line

The punch line here is that scaling is not only about growing larger. It also means potentially growing more diverse. And if there is one thing that the Hadoop deployment numbers tell me, it’s that people are still experimenting. If you are still experimenting, how can you predict with certainty what the next 5 or 10 years will mean in terms of applications for your business? You can’t. Which means that the most important architectural objective might go well beyond the number of switches in a deployment. Scalability could be about building flexibility into you datacenter. How do you get a bunch of different purpose-built capabilities into a single, general-purpose network? Answering that might be the real key to determining how to scale Big Data fabrics.

[Today’s fun fact: It is against the law to use the Star Spangled Banner as dance music in Massachusetts. There go my party plans!]

The post Scaling Big Data fabrics appeared first on Plexxi.

More Stories By Michael Bushong

The best marketing efforts leverage deep technology understanding with a highly-approachable means of communicating. Plexxi's Vice President of Marketing Michael Bushong has acquired these skills having spent 12 years at Juniper Networks where he led product management, product strategy and product marketing organizations for Juniper's flagship operating system, Junos. Michael spent the last several years at Juniper leading their SDN efforts across both service provider and enterprise markets. Prior to Juniper, Michael spent time at database supplier Sybase, and ASIC design tool companies Synopsis and Magma Design Automation. Michael's undergraduate work at the University of California Berkeley in advanced fluid mechanics and heat transfer lend new meaning to the marketing phrase "This isn't rocket science."

@ThingsExpo Stories
The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The security devil is always in the details of the attack: the ones you've endured, the ones you prepare yourself to fend off, and the ones that, you fear, will catch you completely unaware and defenseless. The Internet of Things (IoT) is nothing if not an endless proliferation of details. It's the vision of a world in which continuous Internet connectivity and addressability is embedded into a growing range of human artifacts, into the natural world, and even into our smartphones, appliances, and physical persons. In the IoT vision, every new "thing" - sensor, actuator, data source, data con...
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, discussed single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example t...
How do APIs and IoT relate? The answer is not as simple as merely adding an API on top of a dumb device, but rather about understanding the architectural patterns for implementing an IoT fabric. There are typically two or three trends: Exposing the device to a management framework Exposing that management framework to a business centric logic Exposing that business layer and data to end users. This last trend is the IoT stack, which involves a new shift in the separation of what stuff happens, where data lives and where the interface lies. For instance, it's a mix of architectural styles ...
An entirely new security model is needed for the Internet of Things, or is it? Can we save some old and tested controls for this new and different environment? In his session at @ThingsExpo, New York's at the Javits Center, Davi Ottenheimer, EMC Senior Director of Trust, reviewed hands-on lessons with IoT devices and reveal a new risk balance you might not expect. Davi Ottenheimer, EMC Senior Director of Trust, has more than nineteen years' experience managing global security operations and assessments, including a decade of leading incident response and digital forensics. He is co-author of t...
The Internet of Things will greatly expand the opportunities for data collection and new business models driven off of that data. In her session at @ThingsExpo, Esmeralda Swartz, CMO of MetraTech, discussed how for this to be effective you not only need to have infrastructure and operational models capable of utilizing this new phenomenon, but increasingly service providers will need to convince a skeptical public to participate. Get ready to show them the money!
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges. In his session at @ThingsExpo, Jeff Kaplan, Managing Director of THINKstrategies, will examine why IT must finally fulfill its role in support of its SBUs or face a new round of...
One of the biggest challenges when developing connected devices is identifying user value and delivering it through successful user experiences. In his session at Internet of @ThingsExpo, Mike Kuniavsky, Principal Scientist, Innovation Services at PARC, described an IoT-specific approach to user experience design that combines approaches from interaction design, industrial design and service design to create experiences that go beyond simple connected gadgets to create lasting, multi-device experiences grounded in people's real needs and desires.
Enthusiasm for the Internet of Things has reached an all-time high. In 2013 alone, venture capitalists spent more than $1 billion dollars investing in the IoT space. With "smart" appliances and devices, IoT covers wearable smart devices, cloud services to hardware companies. Nest, a Google company, detects temperatures inside homes and automatically adjusts it by tracking its user's habit. These technologies are quickly developing and with it come challenges such as bridging infrastructure gaps, abiding by privacy concerns and making the concept a reality. These challenges can't be addressed w...
The Domain Name Service (DNS) is one of the most important components in networking infrastructure, enabling users and services to access applications by translating URLs (names) into IP addresses (numbers). Because every icon and URL and all embedded content on a website requires a DNS lookup loading complex sites necessitates hundreds of DNS queries. In addition, as more internet-enabled ‘Things' get connected, people will rely on DNS to name and find their fridges, toasters and toilets. According to a recent IDG Research Services Survey this rate of traffic will only grow. What's driving t...
Connected devices and the Internet of Things are getting significant momentum in 2014. In his session at Internet of @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, examined three key elements that together will drive mass adoption of the IoT before the end of 2015. The first element is the recent advent of robust open source protocols (like AllJoyn and WebRTC) that facilitate M2M communication. The second is broad availability of flexible, cost-effective storage designed to handle the massive surge in back-end data in a world where timely analytics is e...
Scott Jenson leads a project called The Physical Web within the Chrome team at Google. Project members are working to take the scalability and openness of the web and use it to talk to the exponentially exploding range of smart devices. Nearly every company today working on the IoT comes up with the same basic solution: use my server and you'll be fine. But if we really believe there will be trillions of these devices, that just can't scale. We need a system that is open a scalable and by using the URL as a basic building block, we open this up and get the same resilience that the web enjoys.
We are reaching the end of the beginning with WebRTC, and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) i...
"Matrix is an ambitious open standard and implementation that's set up to break down the fragmentation problems that exist in IP messaging and VoIP communication," explained John Woolf, Technical Evangelist at Matrix, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at @ThingsExpo, Robin Raymond, Chief Architect at Hookflash, will walk through the shifting landscape of traditional telephone and voice services ...
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at Internet of @ThingsExpo, James Kirkland, Chief Architect for the Internet of Things and Intelligent Systems at Red Hat, described how to revolutioniz...
Bit6 today issued a challenge to the technology community implementing Web Real Time Communication (WebRTC). To leap beyond WebRTC’s significant limitations and fully leverage its underlying value to accelerate innovation, application developers need to consider the entire communications ecosystem.
The definition of IoT is not new, in fact it’s been around for over a decade. What has changed is the public's awareness that the technology we use on a daily basis has caught up on the vision of an always on, always connected world. If you look into the details of what comprises the IoT, you’ll see that it includes everything from cloud computing, Big Data analytics, “Things,” Web communication, applications, network, storage, etc. It is essentially including everything connected online from hardware to software, or as we like to say, it’s an Internet of many different things. The difference ...
Cloud Expo 2014 TV commercials will feature @ThingsExpo, which was launched in June, 2014 at New York City's Javits Center as the largest 'Internet of Things' event in the world.