Welcome!

Java IoT Authors: Yeshim Deniz, Tim Hinds, Dalibor Siroky, Liz McMillan, Douglas Lyon

Related Topics: Java IoT, Open Source Cloud

Java IoT: Article

j-Interop: An Open Source Library for COM Interoperability Without JNI

A search for pure, non-native, bi-directional interoperability with COM servers

I have spent a good part of the last year trying to "wrap" COM servers in Java for a content management organization. It had an array of syndication servers supported by an integrated messaging platform developed using COM. The purpose of this exercise was to increase the organization's market penetration by hooking on to the J2EE bandwagon across multiple platform configurations. With so many different complex COM servers to work with, some supporting automation and others not, I struggled with the all too familiar JNI cycle...code, crash, code some more, and then crash. Literally speaking, I must have brought down the JVM hundreds of times. To top it off, some syndication servers worked on a "pull" mechanism, they could pull the content out from the interfacing repositories. This meant bi-directional access and an event-based interoperation.

I had a look at some Open Source projects, but they were all using native libraries and didn't sufficiently meet the requirements in hand. Ultimately, we did complete a scaled-down version of the project. I'm quite sure that most of the requirements could have been handled if a non-native solution (in the Open Source community) existed to COM interoperability.

There are a number of reasons why I believe JNI shouldn't be used for accessing COM. It may work well for a small-sized project (two or three COM servers, no bi-directional access, etc.). But for any serious initiatives, I think it has certain drawbacks. Though JNI is Java, you still need to know a lot more about the native component and the target architecture before accessing its services. One has to be proficient in Java and in the native programming language as well (some Open Source projects are trying to address this complexity, i.e., trying to abstract JNI itself). With increasing demands to deliver on time - before time, and the delivery having quality, it's usually hard to find such cross-platform resources. The native and Java layers are so tightly coupled that having dedicated resources for each proves more of a headache than a solution.

I'm pretty sure that it's obvious to you that by linking with native code, JNI takes away one of the most powerful features of the language itself, "platform independence" (write once, run anywhere). It binds the application to the host platform. For example, when using JNI in a Windows environment, the Java application is forced to rely on the native DLLs for its functionality. The same application can't be ported without porting the native library to another platform. This also requires a proxy/stub approach when you want to access a COM server from Unix. This is an invasive procedure (you are deploying a potentially unknown code on the machine where the COM server is located, even if it's in the same intranet) and may not be allowed by the administrative policies governing the domain.

Another disadvantage, when linking with native code is the instability it may bring with it. A poorly written DLL (speaking of Windows) will bring down an entire JVM, taking with it some vital applications. And of course, try debugging that!

The architectures built on JNI look more or less like Figure 1.

Okay well...so what can be done about it? I sat down some months ago to develop an open source library that implements the DCOM protocol, thus allowing for pure, non-native, bi-directional interoperability with COM servers.

I'll try explaining my work in two steps. First I'll give you a primer on DCOM and its inner workings and then I'll talk about j-Interop. If you know how DCOM functions <i> under the hood</i>, you can skip to the section about j-Interop.

DCOM: What and How
Distributed COM or DCOM is a high-level network protocol developed to provide location transparency to COM-based components. The keywords being network protocol and location transparency. Traditional COM components can only perform inter-process communication across process boundaries on the same machine. DCOM uses an RPC mechanism to send and receive information transparently between COM components (clients and servers) on the same network. DCOM was first made available in 1995 with the initial release of Windows NT 4. Essentially, it serves the same purpose as CORBA or RMI. Please have a look at Figure 2.

In terms of an ISO OSI protocol stack, this is how it looks (see Figure 3).

As you can see, DCOM is an application level protocol. It leverages most of the functionality offered by DCE/RPC (see the side bar for a brief overview of DCE/RPC). Since DCE/RPC isn't naturally object-oriented, Microsoft's implementation enhanced the protocol by adding new constructs and providing different meanings to some of the packet fields. This enhanced protocol was christened the Object RPC (ORPC) or MS-RPC. Another significant change that Microsoft made to the protocol was the addition of an NTLM Security Service Provider. One disadvantage of this was the impossibility of any interoperability with other implementations of DCOM on platforms that don't have NTLM, since NTLMSSP is available only in MS-RPC.

Let's see how DCOM works.

DCOM (MS-RPC): Under the Hood
The best way to explain the inner workings of DCOM would be by creating a (COM) client/(COM) server application. I've used Visual Studio to create one. Since "how" to create a COM server (from now on referred to as a COM component) is outside the scope of this article, I won't be mentioning it here. It's best left for a tutorial.

Our COM component is an "out of process" server, i.e., an EXE. For the sake of brevity, it has a single interface "ITestCOMServer" that has a single API call, "Add," that adds two integers and returns the result. Also note, this example is void of any error checks.

HRESULT Add (int x, int y, [out] int* result);

The COM client will execute this API.

The first step is to obtain the "handle" to the COM class serving this interface. The following calls instantiate the COM server and also provide a pointer to its IUnknown interface.

IUnknown *ptrUnknown = NULL;
IITestCOMServer *ptrTestServer = NULL;
HRESULT hr = CoCreateInstance (CLSID_ITestCOMServer, NULL, CLSCTX_REMOTE_SERVER, IID_IUnknown,
(void**)&ptrUnknown);

The second step entails getting a pointer to the actual interface in which the "Add" method resides.

hr = ptrUnknown->QueryInterface(IID_IITestCOMServer, (void**)&ptrTestServer);

if (FAILED(hr))
{
cout << "Failed to get interface pointer, quitting";
}

The third step requires us to execute the "Add" API on the pointer obtained in step 2.

else
{
    int *result = new int;
    hr = ptrTestServer->Add(1,2,result);
    cout << "result of Add is " <<*result;
delete result;
}

The last step is to release all references to the COM server and let the COM runtime garbage collect it.

if (ptrTestServer)
{
ptrTestServer->Release();
}

ptrUnknown->Release();

Simple isn't it? Well, the COM runtime does a lot of work to orchestrate this cycle. Let me try to give you an overview of what happens behind the scenes. (Sources: www.opengroup.org, www.msj.com March 1998, DCOM specification)

1.  Each Windows machine on the network has a subsystem known as the Service Control Manager (not to be confused with the Windows "Services" system). It's a DCE/RPC server that listens at port 135 and runs inside rpcss.exe. The SCM makes sure that when a client request is made, the appropriate COM server is connected and ready to receive the request. It provides an RPC interface, known as IRemoteActivation, which has only a single operation, "RemoteActivation," designed to activate a COM server on a remote machine. This, by the way, is an important difference between DCOM and classic RPC where the server must be running before the client can connect to it. The SCM resides at well-known endpoints, one for each supported network protocol (135 for TCP/UDP).
2.  When the client gets a "CoCreateInstance" call with the execution context set as Remote (CLSCTX_REMOTE_SERVER specifies to the runtime that the COM server is located on a remote machine), the COM runtime consults the Windows registry for the "RemoteServerName" named-value. This value is located at [HKEY_CLASSES_ROOT\APPID\(CLSID of TestCOMServer)]. If a machine name is found under this key then the request to activate the COM server is forwarded to SCM on that remote machine. The remote SCM uses the IRemoteActivation interface to activate the object identified by CLSID_ITestCOMServer.
3.  What does it mean to "activate" a COM object? We will get to that after I talk about the IOxidResolver. I think it's important to clear these basics up otherwise things could become quite confusing.

Each machine that supports the COM network protocol supports a one-per-machine service known as the "OXID Resolver." Like the SCM, it also contains an RPC interface "IOxidResolver." Oxid Resolver performs many important operations, primarily maintaining the binding information necessary to connect to the COM components being exported. It also takes care of keeping the exported objects alive by receiving pings from the COM clients (otherwise they'd be garbage collected) and does lazy protocol registration for servers scoped by the Oxid Resolver. I'll explain this last point a bit more. Each COM server can decide to support a certain set of protocols over which it can be contacted. For example, a server may want to answer only on UDP or TCP or HTTP or all three. Instead of reserving ports for each protocol even before it's activated, a server delays this to the time it's actually activated on a requested protocol. This is quite useful in preventing the machine from running out of ports.
4.  Okay, coming back to activation. Activation should be seen as a set of activities that bring a COM server to a "ready to receive requests" state. In general, it means locating the COM server on the remote machine using the Windows registry, registering its connection information with the Oxid Resolver, marshaling the reference to its IUnknown (rather the "IRemUnknown") interface, and sending it back to the callee (explained in step 7).
5.  On the remote machine, when the server is started by its SCM, two activities take place.

  • The server is associated with an "object exporter" and assigned an object exporter identifier (OXID). An object exporter keeps track of all the interfaces (like in our case ITestCOMServer), which this COM server will export or import.
  • The COM runtime also associates an "Oxid Object" with the COM server, which implements the COM interface "IRemUnknown." It forms the remote proxy for the base "IUnknown" interface. Please note the standard IUnknown interface is never remoted in COM. In its place, the IRemUnknown interface is remoted and results in local calls to QueryInterface, AddRef, and Release on the server.

    At activation time, the RPC binding information of the OXID is also registered with the server-side OXID Resolver. These are full bindings carrying the "How-To-Connect" information (including the supported protocol/port combination) of the COM server. This information is used by the underlying RPC mechanism of the client system to initiate a session with the COM server. One more point worth mentioning is that during activation the server has the choice of being "ready" now or waiting for the first call to come (lazy activation). Usually all servers prefer to be lazy till an actual call comes (initially IRemUnknown) on a specific binding.

6.  I've talked about the SCM and the Oxid Resolver service. They are important infrastructure services. One provides for activation and the other for ```discovering the path and means to the activated object.
7.  Up until now, in executing "CoCreateInstance" we've been able to activate a COM object. We still need to return the interface pointer, which will uniquely identify this activated COM object and allow us further operations on it (like a QueryInterface). Microsoft extended the Network Data Representation (the presentation layer protocol responsible for packaging semantics of the DCE/RPC datatypes) to add the concept of a "Marshaled Interface Pointer" (MIP from hereon). The MIP symbolically represents an interface reference to an object. It consists of two elements, an array of bytes and a marker specifying how to interpret this array of bytes. There are three variations to the interpretation, but I'll stick to the STANDARD type.

The array of bytes representing the STANDARD interface pointer consists primarily of a 128-bit GUID known as IPID, short for interface identifier, that uniquely identifies an interface - it has a one-to-one mapping with each marshaled interface, i.e., ITestCOMServer will have a single IPID - an OXID and a 64-bit object ID (OID) that uniquely identifies the object on which the IPID is found. There's one-to-one mapping between an object instance (implementing one or more interfaces thus IPIDs) and the OID. This OID is quite useful during pinging. Along with all this the MIP also contains the full bindings for the OXID Resolver service running on the remote machine.
8.  When the marshaled interface pointer is returned to the client side through the server-side and client-side SCMs, the COM runtime extracts the OXID, addresses the remote OXID Resolver from MIP, and calls the ResolveOxid() method on its local OXID Resolver to get the bindings ("how to connect" information) identified by the OXID (it has to reach the COM server now for further operations).
9.  The clients-side OXID Resolver checks to se if it has a cached mapping for the OXID; if not, it invokes the ResolveOxid() method of the server-side OXID Resolver - it can since it has the address information from the MIP - which returns the registered RPC binding of the COM server.
10.  The client-side Resolver caches the mappings, and returns the RPC bindings of the COM server to the COM runtime. This lets the runtime create an RPC channel that's connected to the Object exporter of the COM server.
11.  The CoCreateInstance call is now complete.


More Stories By Vikram Roopchand

Vikram Roopchand is a Technical Architect working for Infosys Technologies Ltd. (www.infosys.com). He has about 8.5 years of experience and specializes in Cross Platform development across Content Management and Business Intelligence domains.

Comments (1) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
Peter 01/11/07 07:17:29 PM EST

Fantastic article! I wish I had this library back in 99!

@ThingsExpo Stories
Leading companies, from the Global Fortune 500 to the smallest companies, are adopting hybrid cloud as the path to business advantage. Hybrid cloud depends on cloud services and on-premises infrastructure working in unison. Successful implementations require new levels of data mobility, enabled by an automated and seamless flow across on-premises and cloud resources. In his general session at 21st Cloud Expo, Greg Tevis, an IBM Storage Software Technical Strategist and Customer Solution Architec...
Coca-Cola’s Google powered digital signage system lays the groundwork for a more valuable connection between Coke and its customers. Digital signs pair software with high-resolution displays so that a message can be changed instantly based on what the operator wants to communicate or sell. In their Day 3 Keynote at 21st Cloud Expo, Greg Chambers, Global Group Director, Digital Innovation, Coca-Cola, and Vidya Nagarajan, a Senior Product Manager at Google, discussed how from store operations and ...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settle...
Imagine if you will, a retail floor so densely packed with sensors that they can pick up the movements of insects scurrying across a store aisle. Or a component of a piece of factory equipment so well-instrumented that its digital twin provides resolution down to the micrometer.
A strange thing is happening along the way to the Internet of Things, namely far too many devices to work with and manage. It has become clear that we'll need much higher efficiency user experiences that can allow us to more easily and scalably work with the thousands of devices that will soon be in each of our lives. Enter the conversational interface revolution, combining bots we can literally talk with, gesture to, and even direct with our thoughts, with embedded artificial intelligence, whic...
Product connectivity goes hand and hand these days with increased use of personal data. New IoT devices are becoming more personalized than ever before. In his session at 22nd Cloud Expo | DXWorld Expo, Nicolas Fierro, CEO of MIMIR Blockchain Solutions, will discuss how in order to protect your data and privacy, IoT applications need to embrace Blockchain technology for a new level of product security never before seen - or needed.
When shopping for a new data processing platform for IoT solutions, many development teams want to be able to test-drive options before making a choice. Yet when evaluating an IoT solution, it’s simply not feasible to do so at scale with physical devices. Building a sensor simulator is the next best choice; however, generating a realistic simulation at very high TPS with ease of configurability is a formidable challenge. When dealing with multiple application or transport protocols, you would be...
We are given a desktop platform with Java 8 or Java 9 installed and seek to find a way to deploy high-performance Java applications that use Java 3D and/or Jogl without having to run an installer. We are subject to the constraint that the applications be signed and deployed so that they can be run in a trusted environment (i.e., outside of the sandbox). Further, we seek to do this in a way that does not depend on bundling a JRE with our applications, as this makes downloads and installations rat...
Widespread fragmentation is stalling the growth of the IIoT and making it difficult for partners to work together. The number of software platforms, apps, hardware and connectivity standards is creating paralysis among businesses that are afraid of being locked into a solution. EdgeX Foundry is unifying the community around a common IoT edge framework and an ecosystem of interoperable components.
DX World EXPO, LLC, a Lighthouse Point, Florida-based startup trade show producer and the creator of "DXWorldEXPO® - Digital Transformation Conference & Expo" has announced its executive management team. The team is headed by Levent Selamoglu, who has been named CEO. "Now is the time for a truly global DX event, to bring together the leading minds from the technology world in a conversation about Digital Transformation," he said in making the announcement.
In this strange new world where more and more power is drawn from business technology, companies are effectively straddling two paths on the road to innovation and transformation into digital enterprises. The first path is the heritage trail – with “legacy” technology forming the background. Here, extant technologies are transformed by core IT teams to provide more API-driven approaches. Legacy systems can restrict companies that are transitioning into digital enterprises. To truly become a lead...
Digital Transformation (DX) is not a "one-size-fits all" strategy. Each organization needs to develop its own unique, long-term DX plan. It must do so by realizing that we now live in a data-driven age, and that technologies such as Cloud Computing, Big Data, the IoT, Cognitive Computing, and Blockchain are only tools. In her general session at 21st Cloud Expo, Rebecca Wanta explained how the strategy must focus on DX and include a commitment from top management to create great IT jobs, monitor ...
"Cloud Academy is an enterprise training platform for the cloud, specifically public clouds. We offer guided learning experiences on AWS, Azure, Google Cloud and all the surrounding methodologies and technologies that you need to know and your teams need to know in order to leverage the full benefits of the cloud," explained Alex Brower, VP of Marketing at Cloud Academy, in this SYS-CON.tv interview at 21st Cloud Expo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clar...
The IoT Will Grow: In what might be the most obvious prediction of the decade, the IoT will continue to expand next year, with more and more devices coming online every single day. What isn’t so obvious about this prediction: where that growth will occur. The retail, healthcare, and industrial/supply chain industries will likely see the greatest growth. Forrester Research has predicted the IoT will become “the backbone” of customer value as it continues to grow. It is no surprise that retail is ...
"Space Monkey by Vivent Smart Home is a product that is a distributed cloud-based edge storage network. Vivent Smart Home, our parent company, is a smart home provider that places a lot of hard drives across homes in North America," explained JT Olds, Director of Engineering, and Brandon Crowfeather, Product Manager, at Vivint Smart Home, in this SYS-CON.tv interview at @ThingsExpo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Events announced today that Conference Guru has been named “Media Sponsor” of the 22nd International Cloud Expo, which will take place on June 5-7, 2018, at the Javits Center in New York, NY. A valuable conference experience generates new contacts, sales leads, potential strategic partners and potential investors; helps gather competitive intelligence and even provides inspiration for new products and services. Conference Guru works with conference organizers to pass great deals to gre...
The Internet of Things will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, demonstrated how to move beyond today's coding paradigm and shared the must-have mindsets for removing complexity from the develop...
In his Opening Keynote at 21st Cloud Expo, John Considine, General Manager of IBM Cloud Infrastructure, led attendees through the exciting evolution of the cloud. He looked at this major disruption from the perspective of technology, business models, and what this means for enterprises of all sizes. John Considine is General Manager of Cloud Infrastructure Services at IBM. In that role he is responsible for leading IBM’s public cloud infrastructure including strategy, development, and offering m...
"Evatronix provides design services to companies that need to integrate the IoT technology in their products but they don't necessarily have the expertise, knowledge and design team to do so," explained Adam Morawiec, VP of Business Development at Evatronix, in this SYS-CON.tv interview at @ThingsExpo, held Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA.
To get the most out of their data, successful companies are not focusing on queries and data lakes, they are actively integrating analytics into their operations with a data-first application development approach. Real-time adjustments to improve revenues, reduce costs, or mitigate risk rely on applications that minimize latency on a variety of data sources. In his session at @BigDataExpo, Jack Norris, Senior Vice President, Data and Applications at MapR Technologies, reviewed best practices to ...