Welcome!

Java IoT Authors: Liz McMillan, Elizabeth White, Carmen Gonzalez, Yeshim Deniz, Pat Romanski

Related Topics: Java IoT

Java IoT: Article

EJB 3 Transactions

Understanding and using transactions with EJB 3

Much of the work surrounding the design and development of enterprise applications involves decisions about how to coordinate the flow of persistent data. This includes when and where to cache data, when to apply it to a persistent store (typically the database), how to resolve simultaneous attempts to access the same data and how to resolve errors that might occur while data in the database is in an inconsistent state. A reliable database is capable of handling these issues at a low level in the database tier, but these same issues can exist in the middle (application server) and client tiers as well, and typically require special application logic. One of the principal benefits of using EJB 3 is its support for enterprise-wide services like transaction management and security control. In this article, we will explore how EJB 3 offers transaction services and how you can leverage them to meet your specific requirements.

Understanding Transactions
A transaction is a group of operations that must be performed as a unit. These operations can be synchronous or asynchronous, and can involve persisting data objects, sending mail, validating credit cards, etc. A classic example is a banking transfer, in which one operation debits funds from one account (i.e., updates a record in a database table) and another operation credits those same funds to another account (updates another row in that same, or a different database table). From the perspective of an external application querying both accounts, there must never be a time when these funds can be seen in both accounts. Nor can a moment exist when the funds can be seen in neither account. Only when both operations in this transaction have been successfully performed can the changes be visible from another application context. A group of operations that must be performed together in this way as a unit is known as a transaction.

When the operations in a transaction are performed across databases or other resources that reside on separate computers or processes, this is known as a distributed transaction. Such enterprise-wide transactions require special coordination between the resources involved and can be extremely difficult to program reliably. This is where Java Transaction API (JTA) comes in, providing the interface that resources can implement and to which they can bind, in order to participate in a distributed transaction. The EJB container is a transaction manager that supports JTA and so can participate in distributed transactions involving other EJB containers, as well as third-party JTA resources like many database management systems (DBMS).

The ACID Properties of a Transaction
Transactions come in all shapes and sizes and can involve synchronous and asynchronous operations, but they all have some core features in common, known as their ACID components. ACID refers to the four characteristics that define a robust and reliable transaction: atomicity, consistency, isolation, and durability. Table 1 describes these four components.

EJB 3 addresses these requirements by providing a robust JTA transaction manager and a declarative metadata API that can be specified on interoperable, portable business components. Virtually all Java EE applications require transaction services and EJB brings them to the application developer in a very slick package. From its inception, the EJB framework has provided a convenient way to manage transactions and access control by letting the developer define the behavior declaratively on a method-by-method basis. Beyond these container-provided services, EJB 3 allows developers to turn control over to the application to define transaction event boundaries and other custom behavior.

EJB 3 Transaction Services
The EJB 3 transaction model is built on this JTA model, in which session beans or other application clients provide the transactional context in which enterprise services are performed as a logical unit of work. Enterprise services in the Java EE environment include the creation, retrieval, updating and deletion of entities; the sending of JMS messages to the queue; the execution of MDBs; the firing of mail requests; the invocation of web services; and JDBC operations.

EJB 3 provides a built-in JTA transaction manager, but the real power lies in the declarative services EJB offers to bean providers. Using metadata tags instead of programmatic logic, bean providers can seamlessly participate in JTA transactions and declaratively control the transactional behavior of each business method on an enterprise bean. EJB 3 extends this programming model by providing explicit support for both JTA transactions and non-JTA (resource-local) transactions. Resource-local transactions are restricted to a single resource manager, such as a database connection, but may result in a performance optimization by avoiding the overhead of a distributed transaction monitor. In addition, application builders may leverage the container-provided (JTA-based) services for automatically managing transactions, or they may choose to take control of the transaction boundaries and handle the transaction begin, commit and rollback events explicitly. Within a single application, both approaches may be used alone or in combination if desired. Whereas the choice of whether to have the container or the application itself demarcate transactions is defined on the enterprise bean, the decision of which type of transaction model to use - JTA or resource-local - is determined when a given EntityManager is obtained from within an application. The persistent objects in the game - the entities - are entirely, and happily, unaware of their governing transaction framework. The transactional context in which an entity operates is not part of its definition, so the same entity class may be used in whatever transactional context the application chooses, provided an appropriate EntityManager is created to service the entity's life cycle events.

The EJB 3 container offers declarative demarcation of transaction events, along with the option to demarcate transaction events explicitly in the bean or in the application client code. Let's consider these two approaches separately, beginning with the default option: leveraging container-managed transaction (CMT) demarcation using declarative markup.

Container-Managed Transaction (CMT) Demarcation
EJB 3 provides built-in transaction management services that are available by default to session beans and MDBs. The container demarcates transaction boundaries and automatically begins and commits transactions based on declarative metadata provided by the bean developer.

When an EJB declares its transactional behavior in metadata, the container interposes on calls to the enterprise bean's methods and applies transactional behavior at the session bean's method boundaries. One of a fixed set of options may be specified for each method. The default behavior provided by the container is to check, immediately before invoking the method, whether a transaction context is associated with the current thread. If no transaction context is available, the container begins a new transaction before calling the method. If a transaction is available, the container allows that transaction to be propagated to the method call and made available to the method code. Then, upon returning from the method invocation, the container checks again. If the container was responsible for creating a new transaction context, it automatically commits that transaction after the method is exited (or, if an exception is thrown by that method, it rolls back the transaction it began). If it did not create the transaction, then it allows the transaction to continue unaffected. By interposing on the bean's method calls, the EJB container is able to apply transactional behavior at run time that was specified declaratively at development time.

The default behavior described above is specified by the REQUIRED transaction attribute. You can attribute any one of the six demarcation options shown in Table 2 to any method on a session bean.

All six attributes are typically available for session bean methods, though certain attributes are not available on a session timeout callback method, or when the session bean implements javax.ejb.SessionSynchronization. MDBs support only the REQUIRED and NOT_SUPPORTED attributes. Here is an example of how you would specify the transaction behavior on a session bean method to override the transaction behavior specified (or defaulted) at the bean level:

@TransactionAttribute(TransactionAttributeType.SUPPORTS)
public CustomerOrder createCustomerOrderUsingSupports(Customer customer)
throws Exception { ... }

Table 3 illustrates an EJB's transactional behavior, dependent on its transaction attribute and the presence or absence of a transactional context at the time the session method is called.

Bean-Managed Transaction (BMT) Demarcation
For some enterprise beans, the declarative CMT services may not provide the demarcation granularity they require. For instance, a client may wish to call multiple methods on a session bean without having each method commit its work upon completion. In this case, the client has two options: it can either instantiate its own JTA (or resource-local) transaction, or it can ask the session bean to expose transaction demarcation methods that the client can call to control the transaction boundaries itself.

To address this latter requirement, EJB offers enterprise beans a convenient way to handle their demarcation of transaction events. To turn off the automatic CMT demarcation services, enterprise beans simply specify the @TransactionManagement(TransactionManagementType.BEAN) annotation or assign the equivalent metadata to the session bean in the ejb-jar.xml file. With BMT demarcation, the EJB container still provides the transaction support to the bean. The primary difference is that the bean makes explicit calls to begin, commit and roll back transactions instead of using CMT attributes to declaratively assign transactional behavior to its methods. Also, the container does not propagate transactions begun by a client to beans that elect to demarcate their own transactions. While any given enterprise bean must choose one plan or the other (CMT vs. BMT demarcation) for its methods, both types of beans may interact with each other within a single transaction context.

In the last part of this article, we discuss JPA entity transaction behavior.

How Entities Become Associated with a Transaction Context
From the preceding discussion about how the EJB server acts as a transaction coordinator in associating resources with a transaction context, you may have realized that a JPA entity's persistence context is the resource that gets associated with a transaction. In this way, a persistence context is propagated through method calls so entities in a persistence unit can see each other's intermediate state, through their common persistence context, if they are associated with the same transaction context. Also, the restriction that only one persistence context for any given persistence unit must be associated with a given transaction context ensures that for any entity of type T with identity I, its state will be represented by only one persistence context within any transaction context. Within an application thread, only one transaction context is available at any moment, but the EJB server is free to dissociate one persistence context from that thread and associate a new persistence context for the same persistence unit to satisfy transaction isolation boundaries. When the EJB server does this, the newly instantiated persistence context is not able to see the intermediate changes made to any entities associated with the suspended persistence context.

Container-Managed vs. Application-Managed Persistence Context
The persistence services in EJB 3 let you opt out of container-managed entity persistence altogether and manage the transaction life cycles of your entities explicitly within your application code. When an EntityManager is injected (or looked up through JNDI), it comes in as a container-managed persistence context. The container automatically associates container-managed persistence contexts with any transaction that happens to be in context at the time that the EntityManager is injected. Should an application wish to control how or whether its persistence contexts are associated with transactions, it may obtain an EntityManagerFactory (again, through container injection or JNDI lookup) and explicitly create the EntityManager instances that represent their persistence contexts. An application-managed persistence context is used when the EntityManager is obtained through an EntityManagerFactory-a requirement when running outside the Java EE container.

Transaction-Scoped Persistence Context vs. Extended Persistence Context
When an EntityManager is created, you may specify whether the persistence context that it manages should be bound to the life of a transaction, or whether it should span the life of the EntityManager itself. A persistence context that is created when a transaction is created, and destroyed when the transaction ends, is known as a transaction-scoped persistence context. A persistence context that is created at the time it is injected into the bean (or bound through a JNDI lookup), and is not destroyed until the EntityManager instance is itself destroyed, is called an extended persistence context. Only stateful session beans may use extended persistence contexts. At the time an EntityManager instance is created, its persistence context type is defined, and it may not be changed during the EntityManager's lifetime. The default type is transaction-scoped; to inject an EntityManager by specifying an extended persistence context, you may specify the injection directive with the following:

@PersistenceContext(type = PersistenceContextType.EXTENDED)
private EnterpriseManager em;

or you may define a persistence-context-ref element in the XML descriptor.

Summary
In this article, we began with a discussion of the concepts essential to all transaction behavior, and we then explored both the built-in, declarative features offered by the EJB container, as well as options to bypass this support and coordinate transactions in application code. We concluded by describing the ways that JPA entities can interact with EJBs in a transactional environment.

Now that you are familiar with how to set up and use EJB 3 transactions, you may wish to explore the many related areas also introduced in the EJB 3 and JPA. For an examination of these features, with code samples, check out Beginning EJB 3 Application Development: From Novice to Professional (Apress, 2006).

More Stories By Raghu R. Kodali

Raghu R. Kodali is consulting product manager and SOA evangelist for Oracle Application Server. He leads next-generation SOA initiatives and J2EE feature sets for Oracle Application Server, with particular expertise in EJB, J2EE deployment, Web services, and BPEL. He holds a Masters degree in Computer Science and is a frequent speaker at technology conferences. Raghu is also a technical committee member for the OASIS SOA Blueprints specification, and a board member of Web Services SIG in OAUG. He maintains an active blog at Loosely Coupled Corner (www.jroller.com/page/raghukodali).

More Stories By Jonathan Wetherbee

Jon Wetherbee is a consulting engineer and tech lead for EJB development tools on Oracle's JDeveloper IDE. He has over 12 years of experience in development at Oracle, having built a variety of O/R mapping tools and holding responsibility for Oracle's core EJB toolset since EJB 1.1. In 1999, he received a patent for his work on integrating relational databases in an object-oriented environment.

Jon is co-author of 'Beginning EJB 3 Application Development: From Novice to Professional' (Apress, 2006), and enjoys speaking at user groups on EJB and related topics. Jon holds a BS in cognitive science from Brown University.

Comments (1) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
ejm 10/15/08 10:29:07 AM EDT

Well versed article and nice explanation. Easy to understand especially for us who gives merchant services.

@ThingsExpo Stories
SYS-CON Events announced today that T-Mobile will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. As America's Un-carrier, T-Mobile US, Inc., is redefining the way consumers and businesses buy wireless services through leading product and service innovation. The Company's advanced nationwide 4G LTE network delivers outstanding wireless experiences to 67.4 million customers who are unwilling to compromise on ...
New competitors, disruptive technologies, and growing expectations are pushing every business to both adopt and deliver new digital services. This ‘Digital Transformation’ demands rapid delivery and continuous iteration of new competitive services via multiple channels, which in turn demands new service delivery techniques – including DevOps. In this power panel at @DevOpsSummit 20th Cloud Expo, moderated by DevOps Conference Co-Chair Andi Mann, panelists will examine how DevOps helps to meet th...
Web Real-Time Communication APIs have quickly revolutionized what browsers are capable of. In addition to video and audio streams, we can now bi-directionally send arbitrary data over WebRTC's PeerConnection Data Channels. With the advent of Progressive Web Apps and new hardware APIs such as WebBluetooh and WebUSB, we can finally enable users to stitch together the Internet of Things directly from their browsers while communicating privately and securely in a decentralized way.
With billions of sensors deployed worldwide, the amount of machine-generated data will soon exceed what our networks can handle. But consumers and businesses will expect seamless experiences and real-time responsiveness. What does this mean for IoT devices and the infrastructure that supports them? More of the data will need to be handled at - or closer to - the devices themselves.
The age of Digital Disruption is evolving into the next era – Digital Cohesion, an age in which applications securely self-assemble and deliver predictive services that continuously adapt to user behavior. Information from devices, sensors and applications around us will drive services seamlessly across mobile and fixed devices/infrastructure. This evolution is happening now in software defined services and secure networking. Four key drivers – Performance, Economics, Interoperability and Trust ...
DevOps is often described as a combination of technology and culture. Without both, DevOps isn't complete. However, applying the culture to outdated technology is a recipe for disaster; as response times grow and connections between teams are delayed by technology, the culture will die. A Nutanix Enterprise Cloud has many benefits that provide the needed base for a true DevOps paradigm.
SYS-CON Events announced today that Hitachi, the leading provider the Internet of Things and Digital Transformation, will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Hitachi Data Systems, a wholly owned subsidiary of Hitachi, Ltd., offers an integrated portfolio of services and solutions that enable digital transformation through enhanced data management, governance, mobility and analytics. We help globa...
The 20th International Cloud Expo has announced that its Call for Papers is open. Cloud Expo, to be held June 6-8, 2017, at the Javits Center in New York City, brings together Cloud Computing, Big Data, Internet of Things, DevOps, Containers, Microservices and WebRTC to one location. With cloud computing driving a higher percentage of enterprise IT budgets every year, it becomes increasingly important to plant your flag in this fast-expanding business opportunity. Submit your speaking proposal ...
SYS-CON Events announced today that CollabNet, a global leader in enterprise software development, release automation and DevOps solutions, will be a Bronze Sponsor of SYS-CON's 20th International Cloud Expo®, taking place from June 6-8, 2017, at the Javits Center in New York City, NY. CollabNet offers a broad range of solutions with the mission of helping modern organizations deliver quality software at speed. The company’s latest innovation, the DevOps Lifecycle Manager (DLM), supports Value S...
SYS-CON Events announced today that Super Micro Computer, Inc., a global leader in compute, storage and networking technologies, will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Supermicro (NASDAQ: SMCI), the leading innovator in high-performance, high-efficiency server technology, is a premier provider of advanced server Building Block Solutions® for Data Center, Cloud Computing, Enterprise IT, Hadoop/...
Amazon has gradually rolled out parts of its IoT offerings in the last year, but these are just the tip of the iceberg. In addition to optimizing their back-end AWS offerings, Amazon is laying the ground work to be a major force in IoT – especially in the connected home and office. Amazon is extending its reach by building on its dominant Cloud IoT platform, its Dash Button strategy, recently announced Replenishment Services, the Echo/Alexa voice recognition control platform, the 6-7 strategic...
@GonzalezCarmen has been ranked the Number One Influencer and @ThingsExpo has been named the Number One Brand in the “M2M 2016: Top 100 Influencers and Brands” by Analytic. Onalytica analyzed tweets over the last 6 months mentioning the keywords M2M OR “Machine to Machine.” They then identified the top 100 most influential brands and individuals leading the discussion on Twitter.
Judith Hurwitz is president and CEO of Hurwitz & Associates, a Needham, Mass., research and consulting firm focused on emerging technology, including big data, cognitive computing and governance. She is co-author of the book Cognitive Computing and Big Data Analytics, published in 2015. Her Cloud Expo session, "What Is the Business Imperative for Cognitive Computing?" is scheduled for Wednesday, June 8, at 8:40 a.m. In it, she puts cognitive computing into perspective with its value to the busin...
Five years ago development was seen as a dead-end career, now it’s anything but – with an explosion in mobile and IoT initiatives increasing the demand for skilled engineers. But apart from having a ready supply of great coders, what constitutes true ‘DevOps Royalty’? It’ll be the ability to craft resilient architectures, supportability, security everywhere across the software lifecycle. In his keynote at @DevOpsSummit at 20th Cloud Expo, Jeffrey Scheaffer, GM and SVP, Continuous Delivery Busine...
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
SYS-CON Events announced today that Juniper Networks (NYSE: JNPR), an industry leader in automated, scalable and secure networks, will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Juniper Networks challenges the status quo with products, solutions and services that transform the economics of networking. The company co-innovates with customers and partners to deliver automated, scalable and secure network...
Cognitive Computing is becoming the foundation for a new generation of solutions that have the potential to transform business. Unlike traditional approaches to building solutions, a cognitive computing approach allows the data to help determine the way applications are designed. This contrasts with conventional software development that begins with defining logic based on the current way a business operates. In her session at 18th Cloud Expo, Judith S. Hurwitz, President and CEO of Hurwitz & ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
Grape Up is a software company, specialized in cloud native application development and professional services related to Cloud Foundry PaaS. With five expert teams that operate in various sectors of the market across the USA and Europe, we work with a variety of customers from emerging startups to Fortune 1000 companies.
Financial Technology has become a topic of intense interest throughout the cloud developer and enterprise IT communities. Accordingly, attendees at the upcoming 20th Cloud Expo at the Javits Center in New York, June 6-8, 2017, will find fresh new content in a new track called FinTech.