Welcome!

Java IoT Authors: Zakia Bouachraoui, Yeshim Deniz, Liz McMillan, Elizabeth White, William Schmarzo

Related Topics: @DevOpsSummit, Java IoT, @DXWorldExpo

@DevOpsSummit: Blog Feed Post

Use Case: Spark Performance Monitoring By @MLnick | @CloudExpo [#BigData]

Empowering online stores of all sizes to grow their businesses

Guest blog post by Nick Pentreath, Co-founder of Graphflow

Democratizing Recommendation Technology
At Graphflow, our mission is to empower online stores of all sizes to grow their businesses by providing them access to the same machine learning and Big Data tools used by the largest and most sophisticated tech players in the market.

To deliver on this mission, we decided from the very beginning to go ‘all in’ on Spark for our scalable analytics and machine learning applications. When Graphflow started using Spark, it was on version 0.7.0, and it was relatively immature. A lot has changed over the past year and a half: Spark has become a top-level Apache project, version 1.2.0 was released, and Spark has matured significantly in terms of functionality, deployment, stability, and operations.

Spark Monitoring
There are, however, still a few “missing pieces.”  Among these are robust and easy-to-use monitoring systems. With the version 1.0.0 release, Spark added a metrics system to allow reporting and monitoring of various internal and custom Spark application metrics. Built on top of Coda Hale’s Metrics, the metrics system supports various methods of reporting to external monitoring systems.

This is all very well, but being a very small team, we tend to rely on managed services wherever it makes sense — we just don’t have the resources to manage a dedicated monitoring infrastructure. We recently started using SPM (for monitoring, alerting, and anomaly detection) and Logsene (for our logs) — both from Sematext — across most of our systems, including EC2 metrics, Elasticsearch, and web application log collection and monitoring.

With the recent release of SPM for Spark monitoring, we definitely wanted to take it for a spin!

Getting up and Running
The installation process is straightforward:

  1. Install the SPM monitor on each node in the Spark cluster using the standard package manager.
  2. Amend `SPARK_MASTER_OPTS`, `SPARK_WORKER_OPTS`, and `SPARK_SUBMIT_OPTS` in `spark-env.sh` and `spark.executor.extraJavaOptions` in `spark-defaults.conf` on each node, with the appropriate config properties, including an SPM access key (don’t forget to propagate these config changes to each worker – we do this using *spark-ec2’s* `copy-dirs` command).
  3. Create or amend the metrics properties file `metrics.properties` to point to the JMX sink (by setting `*.sink.jmx.class=org.apache.spark.metrics.sink.JmxSink`).

Once all nodes are restarted, you should start seeing metrics appearing in the SPM dashboard within a few minutes.

The main dashboard provides a useful overview of what’s going on in the cluster. The detail tabs on the side allow you to drill down into more detailed metrics for the Master / Driver, and Workers / Executors, and, of course, all key JVM and server metrics.  We can also feed any custom metrics we want to chart into SPM, but we are not making use of that yet.

Spark_monitoring_1

Spark Troubleshooting with SPM
Spark, being a complex distributed system, sometimes has issues. While these have become rarer with the past few releases — which have improved efficiency and stability significantly — they still happen. Probably the most common causes of failure (either of a Job, a Worker, or the Master) are related to memory pressure or misconfiguration.

As a case in point: on a number of days we were experiencing periodic job failures due to Workers going down. However, we were not seeing a precise cause in the logs. Since we had installed SPM for Spark, we took a look through a few of the metrics dashboards. At first, it was still not clear what might be causing the issue. However, we noticed that at the time of the failure, there was a big spike in CPU usage and, directly afterwards, the overall disk usage dropped off noticeably.

Spark_monitoring_2a

Spark_monitoring_2b

Once we drilled down from the aggregated metrics view (above) to the individual disk view, the root cause became clear – running out of disk space on the root device!

Spark_monitoring_3a

Spark_monitoring_3b

Sure enough, once we knew what to look for, we found that the Spark working directory on each Worker node had gotten clogged up with job logs and JARs.  We run a fairly large number of jobs on regular schedules (every 15 minutes, every hour, daily and so on), and each job caused more build up of these files in the working directory.

We had correctly set `spark.local.dir` to the large disk volume, but the default working directory is set to `$SPARK_HOME/work`. This setting can be changed with the environment variable `SPARK_WORKER_DIR` in `spark-env.sh`. We also turned on the ‘worker cleanup’ functionality by setting `spark.worker.cleanup.enabled true` in `spark-defaults.conf`. The Spark Standalone guide has more detail on these settings.

Everything in One Place
Using SPM, together with the Spark Web UI and its ability to keep history on previously run Spark applications, we’ve found that troubleshooting Spark performance issues has gotten much easier. On top of that, the ability to manage metrics, monitoring and logging across our entire stack in one place, as well as integrate log search and analytics for Spark, is a huge win for our team.

To learn more about us and our eCommerce and Recommendation Analytics solutions, visit the Graphflow web site.  And to learn more about SPM for Spark monitoring, check out Sematext.

Got some feedback or suggestions?  Drop Sematext a line — they’d love to hear from you!

Filed under: Monitoring Tagged: Apache Spark, monitoring, performance monitoring, Spark, spm

Read the original blog entry...

More Stories By Sematext Blog

Sematext is a globally distributed organization that builds innovative Cloud and On Premises solutions for performance monitoring, alerting and anomaly detection (SPM), log management and analytics (Logsene), and search analytics (SSA). We also provide Search and Big Data consulting services and offer 24/7 production support for Solr and Elasticsearch.

IoT & Smart Cities Stories
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more busine...
Bill Schmarzo, author of "Big Data: Understanding How Data Powers Big Business" and "Big Data MBA: Driving Business Strategies with Data Science," is responsible for setting the strategy and defining the Big Data service offerings and capabilities for EMC Global Services Big Data Practice. As the CTO for the Big Data Practice, he is responsible for working with organizations to help them identify where and how to start their big data journeys. He's written several white papers, is an avid blogge...
Nicolas Fierro is CEO of MIMIR Blockchain Solutions. He is a programmer, technologist, and operations dev who has worked with Ethereum and blockchain since 2014. His knowledge in blockchain dates to when he performed dev ops services to the Ethereum Foundation as one the privileged few developers to work with the original core team in Switzerland.
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
Whenever a new technology hits the high points of hype, everyone starts talking about it like it will solve all their business problems. Blockchain is one of those technologies. According to Gartner's latest report on the hype cycle of emerging technologies, blockchain has just passed the peak of their hype cycle curve. If you read the news articles about it, one would think it has taken over the technology world. No disruptive technology is without its challenges and potential impediments t...
If a machine can invent, does this mean the end of the patent system as we know it? The patent system, both in the US and Europe, allows companies to protect their inventions and helps foster innovation. However, Artificial Intelligence (AI) could be set to disrupt the patent system as we know it. This talk will examine how AI may change the patent landscape in the years to come. Furthermore, ways in which companies can best protect their AI related inventions will be examined from both a US and...
Bill Schmarzo, Tech Chair of "Big Data | Analytics" of upcoming CloudEXPO | DXWorldEXPO New York (November 12-13, 2018, New York City) today announced the outline and schedule of the track. "The track has been designed in experience/degree order," said Schmarzo. "So, that folks who attend the entire track can leave the conference with some of the skills necessary to get their work done when they get back to their offices. It actually ties back to some work that I'm doing at the University of San...
When talking IoT we often focus on the devices, the sensors, the hardware itself. The new smart appliances, the new smart or self-driving cars (which are amalgamations of many ‘things'). When we are looking at the world of IoT, we should take a step back, look at the big picture. What value are these devices providing. IoT is not about the devices, its about the data consumed and generated. The devices are tools, mechanisms, conduits. This paper discusses the considerations when dealing with the...