Welcome!

Java IoT Authors: Elizabeth White, Paul Simmons, Liz McMillan, Yeshim Deniz, Pat Romanski

Related Topics: Containers Expo Blog, Java IoT, @CloudExpo

Containers Expo Blog: Blog Feed Post

Musings on Neural Networking By @DaveGraham | @CloudExpo #Cloud

I’ve always had a fascination with the way information is acquired and process

Given my last post was in November of 2013 (trust me, I’ve been busy), I figured I’d start out with a heady topic like “Neural

Networking” in an age where Deep Machine Learning and perhaps its lesser cousin, assisted Machine Learning (I’ll define in a bit), seem to be all the rage.  However, before we begin, I want to make a few things clear:

  • I’m no expert in these fields.
  • I’m musing out loud here.  You’re my audience and what you determine to be salient and what you deem junk is, well, your problem, not mine.
  • DML/AML, Neural Networking, and a whole host of other terms, acronyms, mindf**k level events, etc. are here. Deal with it.

So with such an illustrious preface, I suppose we should let the party begin.

I’ve always had a fascination with the way information is acquired and process. Reading back through the history of this site, you can see this tendency towards more fanciful thinking, e.g., GPGPU assisted network analytics, future storage systems using Torrenza-style processing.  What has once been theory has made its way into the realm of praxis; looking no further than ICML 2015, for example, to see the forays into DML that nVidia is making with their GPUs.  And on the story goes.  Having said all this, there are elements of data, of data networking, of data processing, which, to date, have NOT gleaned all the benefits of this type of acceleration.  To that end, what I am going to attempt to posit today is an area where Neural Networking (or at least the benefits therein) can be usefully applied to an area interacted with every single nanosecond of every day: the network.

Glossary:
Before we get much further, we should probably have a definition of some terms that I will be using:

  • Deep Machine Learning (DML): burgeoning area of machine learning research focused on machine intelligence utilizing underlying principles of neural networking
  • Assisted Machine Learning (aka Hybrid; AML): a half-step towards DML where pre-pended processing is done by fixed systems within a rough grid approach  and learning takes place on these processed chunks of data.
  • Neural Networking: “a computing system made up of a number of simple, highly interconnected processing elements, which process information by their dynamic state response to external inputs.” (In “Neural Network Primer: Part I” by Maureen Caudill, AI Expert, Feb. 1989)
  • Packet Forwarding Engines (PFE): base level of hardware in a contemporary network switch

State of the Union: Networks
To talk about the future, some mention is needed of the current état de fait of systems networking.

Packet Forward Engines (PFEs) are the muscle of networking switches. Today, we’re facing routinely more powerful PFEs, both custom as well as mainline/merchant.  Companies like Cisco, Broadcom, Xpliant, Intel, Marvel, Juniper, etc. have propagated designs and delivered ever-increasingly scalable devices that can process billions of bits of information at a time.  The traceable curve here closely follows an analog of Moore’s law while not exactly staying within the same bounds (e.g. I could point out that Broadcom’s Trident/Trident+ compared to the currently shipping Trident 2 are not all that far removed from each other both in frequency, scale, latency, and processing power).  If we allow for interstitial comparisons cross-vendor, the story changes somewhat and, to my mind, the curve becomes even more pronounced.  Comparing custom silicon from Juniper or Cisco to that of Broadcom, for example, shows a higher level of capability present in these more custom designs, albeit with a slower time to market.  All this is being said by way of pointing out that compared to host-level development of processors (like Intel’s Xeon/Core and AMD‘s APU/CPU line ups), these specialized processing units have a different scale in/scale out process.  Consequently, their application has been mostly stagnant; a switch line or two released with a regular cadence of roughly 18 months or so, interspersed by the next important part of networking: the software.

Software development is as critical to the current state of networking as the hardware is.  Relying on fixed pipeline devices (as the Trident 2 is), requires a certain level of determinism to be designed into the software that controls it.  With the seminal development of software development kits (SDKs), the de-coupling has allowed for vendors to write against a known set of functions with a healthy separation from the underlying hardware.  This abstraction has both accomplished a level of increasing functionality and capability within the systems (e.g. Broadcom’s concept of a programmable unified forwarding table (UFT)),  as well as allowing for agile development of the overlaying software (e.g. quicker time to market for a network operating system (NOS) built on top of said SDK).  Having this level of functionality is important as it allows more agile decisions to be made as standards or protocols are ratified for implementation.    An NOS is only as capable as the hardware it lies upon, however, and that leads us to the third part of the current network: the control plane processing.

The control plane of a network switch is the brain of the operations. A PFE is useless as a commodity processor.  If you examine its structure closely, its functional blocks are designed for very purpose driven applications.  This type of processing, while important for the datagrams it will functionally serve, is useless for running more banal applications like an NOS.  However, generic processing hardware, like PowerPC, MIPS, ARM, or even x86 cores can be harnessed to manage this type of workload very effectively.  In recent years, there has been increasing momentum to moving these control plane processing entities from more archaic and proprietary architectures like PPC and MIPS, to more modern and commercially available standards like ARM and x86.  This move has allowed for modernizing the control plane from an embedded system to a discrete “system on a switch” running modern operating systems and either virtualizing the NOS (e.g. like Juniper’s QFX5100 switch line) or partitioning via containers or some other level of abstraction.  The benefits of such systems cannot be ignored as again, time to market and feature development becomes more agile in nature.  (Side note: the role of ARM as a valid control plane foundation cannot be overlooked and will be the subject of another post at some point in the not-so-distant future).

In summary, the current networking switch present in the data center is comprised of a PFE, a network operating system (NOS), and a control plane to run the NOS. This is not unlike a commodity server with lots of physical interfaces designed for ingress and egress of data.  These switches are increasingly complex and performance-heavy and provide a robust foundation upon which to build neural networks.

Becoming Neural, not Neurotic
When you walk into your living room, tell your Xbox One to turn itself on (“Xbox On!”) and watch as the always-listening machine powers up your TV and itself and then scans you really quick to determine identity, you’re watching machine learning in action. This process makes use of both audio and visual queuing and localization of data (a core component of neural networking) to derive identity and causality.  You had to walk through a setup process to both capture your image as well as your vocalization.  This was stored in a local database and used as a reference point.  The system is given rough control points to operate against but is functionally able to interact against this baseline; case in point, depending on my level of beard growth or not, my Xbox has various levels of success in determining who I am by sight.  The same goes for my iPhone, my Android, my Amazon Echo, etc.  Each of these machines has a minimal database connected to a backend process (the “cloud” or another hosted platform) and performs a fixed function (voice recognition, facial recognition).  All this explanation is to demonstrate that we’re in the throes of neural networks without even realizing.  If we look at the network as a necessary part of this process, it becomes the springboard for incredible capability.

So how can a transport layer become “neural”?  Looking back at our definition of “neural networks” we see that at its very foundation is the concept connectedness.  A network is a collection of interconnected devices using some sort of medium, whether copper, optical, or radio frequency that allows them to interoperate or exchange data.  Transporting data, whether electrical, radio frequency, or optical, is just that: transport.  It implies neither intelligence nor insight.  The sender and the receiver, however, can operate on data and make decisions with some level of determinism, though, and this is where we will focus.  Historically, one would look for the systems attached to the transport layer as the true members of the network.  However, as noted previously, with the advent of “system on a switch” control planes, suddenly we have the appearance of systems as joining points, not just transport pipes.

Moving further, if these transport junctions or pipes suddenly develop the intelligence, based on no other inputs but data, to route “conversations” or data in ways that logically make sense and have derived value to either the sender, receiver, or both, have we achieved a neural network? We can see some basic interworkings of this in the use of LLDP (link layer discovery protocol) as a low level exchange of “who are you?” information, but this is derived from extant specifications of what a datagram should look like.  This isn’t flaunting the concepts of neural networking but belies that data, exclusive of content and context, is known already.  So, the next logical leap is how that data is interpreted.

Let’s presuppose that LLDP has provided two neighboring switches with the identity, capability, and proximity to each other.  What then?  As hosts are connected one side to another, data will flow based on the hosts requirements for connectedness and data.  The transport layer, at that point, is nothing more than transport; simple forwarding devices.  However, let’s also assume that these two switches have a system attached to each respective control plane that is constantly watching traffic as it flows across and is “learning.”  What these switches are learning can be perceived as raw input and can be manipulated and quantified as such.  In a neural networking world, these systems are nascent; raw with no heuristic capability as yet designed.

The situation described above is precisely why networking systems function so completely today.  They’re not tasked with anything beyond fixed parameters or inspection.  Think of it:  IETF and IEEE have specified what a datagram should look like.  It should have Layer-2 source and destination media access control (mac) address along with payload, for example.  But beyond this, what is accomplished?  The PFE is looking for datagrams that conform to these standards to pass along; anything else is malformed and dropped.  You quickly reach a situation where, heuristically, you’re limiting the overall potential of these machines to be simple engines, receiving parameters and doing as told.  What, then, could be done?

Vision Casting
I can sit here and postulate any number of ideas that my peers have already done.  I’m more interested in what we can do with the data that is already present.  We can argue that daemons that run in the kernel, statistic packages that collect PFE-published data points, or other such utilities are useful.  In a way, they are, but they represent a subset of capabilities and are mostly human driven (AML at its finest).  What if, however, each time a request is made, the switch learns what data points are being requested and viewed and is able to selectively feed only the most salient points back to its consumers without flooding tons of useless information?  What if this is a priori to a receiver (in the classic SNMP use case)? What if this is machine driven (DML) and becomes part of the flow?

For a network to become “aware” and fully realized as neural in nature (and presupposing the eventual coupling of machine state to machine state thru a hyperaware network as my conclusion) it must be able to functionally process data on its own, either by simple heuristic learning (profiling, as noted above, is just one method) or through the contrived mechanisms of its NOS in a non-rigid manner (e.g. not L2 learning, etc.)  Certainly the use of standardized protocols for initial communication is encouraged, since it can engage heterogenous systems together in communication without other proprietary lower-level protocols like HiGig, but beyond this initial negotiation, the hope and desire is that learning, forwarding, reporting, and engaging become autonomous and self-forming.  As systems interact, then, decisions will be made based on what the datagram contains, the way the PFE is responding to traffic flows and utilization, and also what the next connected device is doing.  This capability is present, to some extent, today in systems that use a network management system (NMS) that wholistically can see the network for what it is, but this external intelligence, is again, driven from the outside in and not organic to the devices themselves.

Conclusion
I’ve laid out what I hope is the framework for an ongoing discussion of neural networks (without delving into AML/DML this go around) and their role within the actual network space.  I’m curious as to your thoughts (constructive, please).

Read the original blog entry...

More Stories By Dave Graham

Dave Graham is a Technical Consultant with EMC Corporation where he focused on designing/architecting private cloud solutions for commercial customers.

@ThingsExpo Stories
DXWorldEXPO LLC announced today that ICC-USA, a computer systems integrator and server manufacturing company focused on developing products and product appliances, will exhibit at the 22nd International CloudEXPO | DXWorldEXPO. DXWordEXPO New York 2018, colocated with CloudEXPO New York 2018 will be held November 11-13, 2018, in New York City. ICC is a computer systems integrator and server manufacturing company focused on developing products and product appliances to meet a wide range of ...
Michael Maximilien, better known as max or Dr. Max, is a computer scientist with IBM. At IBM Research Triangle Park, he was a principal engineer for the worldwide industry point-of-sale standard: JavaPOS. At IBM Research, some highlights include pioneering research on semantic Web services, mashups, and cloud computing, and platform-as-a-service. He joined the IBM Cloud Labs in 2014 and works closely with Pivotal Inc., to help make the Cloud Found the best PaaS.
Headquartered in Plainsboro, NJ, Synametrics Technologies has provided IT professionals and computer systems developers since 1997. Based on the success of their initial product offerings (WinSQL and DeltaCopy), the company continues to create and hone innovative products that help its customers get more from their computer applications, databases and infrastructure. To date, over one million users around the world have chosen Synametrics solutions to help power their accelerated business or per...
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
In an era of historic innovation fueled by unprecedented access to data and technology, the low cost and risk of entering new markets has leveled the playing field for business. Today, any ambitious innovator can easily introduce a new application or product that can reinvent business models and transform the client experience. In their Day 2 Keynote at 19th Cloud Expo, Mercer Rowe, IBM Vice President of Strategic Alliances, and Raejeanne Skillern, Intel Vice President of Data Center Group and ...
Founded in 2000, Chetu Inc. is a global provider of customized software development solutions and IT staff augmentation services for software technology providers. By providing clients with unparalleled niche technology expertise and industry experience, Chetu has become the premiere long-term, back-end software development partner for start-ups, SMBs, and Fortune 500 companies. Chetu is headquartered in Plantation, Florida, with thirteen offices throughout the U.S. and abroad.
In his Opening Keynote at 21st Cloud Expo, John Considine, General Manager of IBM Cloud Infrastructure, led attendees through the exciting evolution of the cloud. He looked at this major disruption from the perspective of technology, business models, and what this means for enterprises of all sizes. John Considine is General Manager of Cloud Infrastructure Services at IBM. In that role he is responsible for leading IBM’s public cloud infrastructure including strategy, development, and offering m...
From 2013, NTT Communications has been providing cPaaS service, SkyWay. Its customer’s expectations for leveraging WebRTC technology are not only typical real-time communication use cases such as Web conference, remote education, but also IoT use cases such as remote camera monitoring, smart-glass, and robotic. Because of this, NTT Communications has numerous IoT business use-cases that its customers are developing on top of PaaS. WebRTC will lead IoT businesses to be more innovative and address...
Rodrigo Coutinho is part of OutSystems' founders' team and currently the Head of Product Design. He provides a cross-functional role where he supports Product Management in defining the positioning and direction of the Agile Platform, while at the same time promoting model-based development and new techniques to deliver applications in the cloud.
Business professionals no longer wonder if they'll migrate to the cloud; it's now a matter of when. The cloud environment has proved to be a major force in transitioning to an agile business model that enables quick decisions and fast implementation that solidify customer relationships. And when the cloud is combined with the power of cognitive computing, it drives innovation and transformation that achieves astounding competitive advantage.
In his session at Cloud Expo, Alan Winters, U.S. Head of Business Development at MobiDev, presented a success story of an entrepreneur who has both suffered through and benefited from offshore development across multiple businesses: The smart choice, or how to select the right offshore development partner Warning signs, or how to minimize chances of making the wrong choice Collaboration, or how to establish the most effective work processes Budget control, or how to maximize project result...
IoT is rapidly becoming mainstream as more and more investments are made into the platforms and technology. As this movement continues to expand and gain momentum it creates a massive wall of noise that can be difficult to sift through. Unfortunately, this inevitably makes IoT less approachable for people to get started with and can hamper efforts to integrate this key technology into your own portfolio. There are so many connected products already in place today with many hundreds more on the h...
Personalization has long been the holy grail of marketing. Simply stated, communicate the most relevant offer to the right person and you will increase sales. To achieve this, you must understand the individual. Consequently, digital marketers developed many ways to gather and leverage customer information to deliver targeted experiences. In his session at @ThingsExpo, Lou Casal, Founder and Principal Consultant at Practicala, discussed how the Internet of Things (IoT) has accelerated our abilit...
In his keynote at 19th Cloud Expo, Sheng Liang, co-founder and CEO of Rancher Labs, discussed the technological advances and new business opportunities created by the rapid adoption of containers. With the success of Amazon Web Services (AWS) and various open source technologies used to build private clouds, cloud computing has become an essential component of IT strategy. However, users continue to face challenges in implementing clouds, as older technologies evolve and newer ones like Docker c...
Data is the fuel that drives the machine learning algorithmic engines and ultimately provides the business value. In his session at Cloud Expo, Ed Featherston, a director and senior enterprise architect at Collaborative Consulting, discussed the key considerations around quality, volume, timeliness, and pedigree that must be dealt with in order to properly fuel that engine.
No hype cycles or predictions of zillions of things here. IoT is big. You get it. You know your business and have great ideas for a business transformation strategy. What comes next? Time to make it happen. In his session at @ThingsExpo, Jay Mason, Associate Partner at M&S Consulting, presented a step-by-step plan to develop your technology implementation strategy. He discussed the evaluation of communication standards and IoT messaging protocols, data analytics considerations, edge-to-cloud tec...
In his keynote at 18th Cloud Expo, Andrew Keys, Co-Founder of ConsenSys Enterprise, provided an overview of the evolution of the Internet and the Database and the future of their combination – the Blockchain. Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settl...
In his session at @ThingsExpo, Dr. Robert Cohen, an economist and senior fellow at the Economic Strategy Institute, presented the findings of a series of six detailed case studies of how large corporations are implementing IoT. The session explored how IoT has improved their economic performance, had major impacts on business models and resulted in impressive ROIs. The companies covered span manufacturing and services firms. He also explored servicification, how manufacturing firms shift from se...
IoT is at the core or many Digital Transformation initiatives with the goal of re-inventing a company's business model. We all agree that collecting relevant IoT data will result in massive amounts of data needing to be stored. However, with the rapid development of IoT devices and ongoing business model transformation, we are not able to predict the volume and growth of IoT data. And with the lack of IoT history, traditional methods of IT and infrastructure planning based on the past do not app...
Organizations planning enterprise data center consolidation and modernization projects are faced with a challenging, costly reality. Requirements to deploy modern, cloud-native applications simultaneously with traditional client/server applications are almost impossible to achieve with hardware-centric enterprise infrastructure. Compute and network infrastructure are fast moving down a software-defined path, but storage has been a laggard. Until now.