Welcome!

Java IoT Authors: Liz McMillan, Elizabeth White, Yeshim Deniz, Zakia Bouachraoui, Pat Romanski

Related Topics: @DXWorldExpo, Mobile IoT, @CloudExpo

@DXWorldExpo: Blog Post

Using Data Analytics for a Better User Experience By @Dana_Gardner | @BigDataExpo #BigData

How Localytics uses Big Data to improve mobile app development and marketing

The next BriefingsDirect big data innovation case study interview investigates how Localytics uses data and associated analytics to help providers of mobile applications improve their applications -- and also allow them to better understand the uses for their apps and dynamic customer demands.

To learn more about how big data helps mobile application developers better their products and services, please join Andrew Rollins, Founder and Chief Software Architect at Localytics, based in Boston. The discussion is moderated by me, Dana Gardner, Principal Analyst at Interarbor Solutions.

Here are some excerpts:

Gardner: Tell us about your organization. You founded it to do what?

Rollins: We founded in 2008, two other guys and I. We set out initially to make mobile apps. If you remember back in 2008, this is when the iPhone App Store launched. So there was a lot of excitement around mobile apps at that time.

Rollins

We initially started looking at different concepts for apps, but then, over a period of a couple months, discovered that there really weren't a whole lot of services out there for mobile apps. It was basically a very bare ecosystem, kind of like the Wild, Wild West.

We ended up focusing on whether there was a services play in this industry and we settled on analytics, which we then called Localytics. The analogy we like to use is, at the time it was a little bit of a gold rush, and we want to sell the pickaxes. So that’s what we did.

Gardner: That makes a great deal of sense, and it has certainly turned into a gold rush. For those folks who do the mining, creating applications, what is it that they need to know?

Analytics and marketing

Rollins: That’s a good question. Here's a little back story on what we do. We do analytics, but we also do marketing. We're a full-service solution, where you can measure how your application is performing out in the wild. You can see what your users are doing. You can do anything from funnel analysis to engagement analysis, things like that.

From there, we also transition into the marketing side of things, where you can manage your push notifications, your in/out messaging.

For people who are making mobile apps, often they want to look at key metrics and then how to drive those metrics. That means a lot of A/B testing, funnel analysis, and engagement analysis.

It means not only analyzing these things, but making meaningful interactions, reaching out to customers via push notifications, getting them back in the app when they are not using the app, identifying points of drop-off, and messaging them at the right time to get them back in.

An example would be an e-commerce app. You've abandoned the shopping cart. Let’s get you back in the application via some sort of messaging. Doing all of that, measuring the return on investment (ROI) on that, measuring your acquisition channels, measuring what your users are doing, and creating that feedback loop is what we advocate mobile app developers do.

Gardner: You're able to do data-driven marketing in a way that may not have been very accessible before, because everything that’s done with the app is digital and measurable. There are logs, servers -- and so somewhere there's going to be a trail. It’s not so much marketing as it is science. We've always thought of marketing as perhaps an art and less of a science. How do you see this changing the very nature of marketing?

Everything ultimately that you are doing really does need to be data-driven. It's very hard to work off just intuition alone.

Rollins: Everything ultimately that you are doing really does need to be data-driven. It's very hard to work off of just intuition alone. So that's the art and science. You come out with your initial hypothesis, and that’s a little bit more on the craft or art side, where you're using your intuition to guide you on where to start.

From there, you have to use the data to iterate. I'm going to try this, this, and this, and then see which works out. That would be like a typical multivariate kind of testing.

Determine what works out of all these concepts that you're trying, and then you iterate on that. That's where measuring anything you do, any kind of interaction you have with your user, and then using that as feedback to then inform the next interaction is what you have to be doing.

Gardner: And this is also a bit revolutionary when it comes to software development. It wasn't that long ago that the waterfall approach to development might leave years between iterations. Now, we're thinking about constantly updating, iterating, getting a feedback loop, and condensing the latency of that feedback loop so that we really can react as close to real-time as possible.

What is it about mobile apps that's allowed for a whole different approach to this notion of connectedness and feedback loops to an app audience?

Mobile apps are different

Rollins: This brings up a good point. A lot of people ask why we have a mobile app analytics company. Why did we do that? Why is typical web analytics not good enough? It kind of speaks to something that you're talking about. Mobile apps are a little bit different than the regular web, in the sense that you do have a cycle that you can push apps out on.

You release to, let’s say, the iPhone App Store. It might take a couple of weeks before your app goes out there. So you have to be really careful about what you're publishing, because your turnaround time is not that of the web. [Register for the upcoming HP Big Data Conference in Boston on Aug. 10-13.]

However, there are certain interactions you can have, like on the messaging side, where you have an ability to instantly go back and forth. Mobile apps are a different kind of market. It requires a little different understanding than the traditional approach.

... We consume the data in a real-time pipeline. We're not doing background batch processing that you might see in something like Hadoop. We're doing a lot of real-time pipeline stuff, such that you can see results within a minute or two of it being uploaded from a device. That's largely where HP Vertica comes in, and why we ended up using Vertica, because of its real-time nature. It’s about the scale.

Gardner: If I understand correctly, you have access to the data from all these devices, you are crunching that, and you're offering reports and services back to your customers. Do they look to you as also a platform provider or just a data-service provider? How do the actual hosting and support services for these marketing capabilities come about?

Rollins: We tend to cater more toward the high end. A lot of our customers are large app publishers that have an ongoing application, let’s say a shopping application or news application.

In that sense, when we bring people on board, oftentimes they tend to be larger companies that aren’t necessarily technically savvy yet about mobile, because it's still new for some people. We do offer a lot of onboarding services to make sure they integrate their application correctly, measure it correctly, and are looking at the right metrics for their industry, as compared to other apps in that industry.

Then, we keep that relationship open as they go along and as they see data. We iterate on that with them. Because of the newness of the industry it does require education.

Gardner: And where is HP Vertica running for you? Do you run it on your own data center? Are you using cloud? Is there a hybrid? Do you have some other model?

Running in the cloud

Rollins: We run it in the cloud. We are running on Amazon Web Services (AWS). We've thought a lot about whether we should run it in a separate data center, so that we can dictate the hardware, but presently we are running it in AWS.

Gardner: Let’s talk about what you can do when you do this correctly. Because you have a capacity to handle scale, you've developed speed, and you understand the requirements in the market, what are your customers getting from the ability to do all this?

Rollins: It really depends on the customer. Something like an e-commerce app is going to look heavily at things like where users are dropping off and what's preventing them from making that purchase.

Another application, like news, which I mentioned, will look at something different, usually something more along the lines of engagement. How long are they reading an article for? That matters to them, so that they can give those numbers to advertisers.

So the answer to that largely depends on who you are and what your app is. Something like an e-commerce app is going to look heavily at things like where users are dropping off and what's preventing them from making that purchase.

Something like an e-commerce app is going to look heavily at things like where users are dropping off and what's preventing them from making that purchase.

Gardner: I suppose another benefit of developing these insights, as specific and germane as they might be to each client, is the ability to draw different types of data in. Clearly, there's the data from the App Store and from the app itself, but if we could join that data with some other external datasets, we might be able to determine something more about why they drop-off or why they are spending more, or time doing certain things.

So is there an opportunity, and do you have any examples of where you've been able to go after more datasets and then be able to scale to that?

Rollins: This is something that's come up a lot recently. In the past year, we have our own products that we're launching in this space, but the idea of integrating different data types is really big right now.

You have all these different silos -- mobile, web, and even your internal server infrastructure. If you're a retail company that has a mobile app, you might even have physical stores. So you're trying to get all this data in some collective view of your customer.

You want to know that Sally came to your store and purchased a particular kind of item. Then, you want to be able to know that in your mobile app. Maybe you have a loyalty card that you can tie across the media and then use that to engage with her meaningfully about stuff that might interest her in the mobile app as well.

"We noticed that you bought this a month ago. Maybe you need another one. Here is a coupon for it."

Other datasets

That's a big thing, and we're looking at a lot of different ways of doing that by bringing in other datasets that might not be from just a mobile app itself.

We're not even focused on mobile apps any more. We're really just an app analytics company, and that means the web and desktop. We ship in Windows, for example. We deal with a lot of Microsoft applications. Tying together all of that stuff is kind of the future.

Gardner: For those organizations that are embarking on more of a data-driven business model, that are looking for analytics and platforms and requirements, is there anything that you could offer in hindsight having traveled this path and worked with HP Vertica. What should they keep in mind when they're looking to move into a capability, maybe it's on-prem, maybe it's cloud. What advice could you offer them?

At scale, you have to know what each technology is good at, and how you bring together multiple technologies to accomplish what you want.

Rollins: The journey that we went through was with various platforms. At the end of day, be aware of what the vendor of the big-data platform is pitching, versus the reality of it.

A lot of times, prototyping is very easy, but actually going to large scale is fairly difficult. At scale, you have to know what each technology is good at, and how you bring together multiple technologies to accomplish what you want.

That means a lot of prototyping, a lot of stress testing and benchmarking. You really don’t know until you try it with a lot of these things. There are a lot of promises, but the reality might be different.

Gardner: Any thoughts about Vertica’s track record, given your length of experience?

Rollins: They're really good. I'm both impressed with the speed of it as compared to other things we have looked at, as well as the features that they release. Vertica 7 has a bunch of great stuff in it. Vertica 6, when it came out, had a bunch of great stuff in it. I'm pretty happy with it.

You may also be interested in:

More Stories By Dana Gardner

At Interarbor Solutions, we create the analysis and in-depth podcasts on enterprise software and cloud trends that help fuel the social media revolution. As a veteran IT analyst, Dana Gardner moderates discussions and interviews get to the meat of the hottest technology topics. We define and forecast the business productivity effects of enterprise infrastructure, SOA and cloud advances. Our social media vehicles become conversational platforms, powerfully distributed via the BriefingsDirect Network of online media partners like ZDNet and IT-Director.com. As founder and principal analyst at Interarbor Solutions, Dana Gardner created BriefingsDirect to give online readers and listeners in-depth and direct access to the brightest thought leaders on IT. Our twice-monthly BriefingsDirect Analyst Insights Edition podcasts examine the latest IT news with a panel of analysts and guests. Our sponsored discussions provide a unique, deep-dive focus on specific industry problems and the latest solutions. This podcast equivalent of an analyst briefing session -- made available as a podcast/transcript/blog to any interested viewer and search engine seeker -- breaks the mold on closed knowledge. These informational podcasts jump-start conversational evangelism, drive traffic to lead generation campaigns, and produce strong SEO returns. Interarbor Solutions provides fresh and creative thinking on IT, SOA, cloud and social media strategies based on the power of thoughtful content, made freely and easily available to proactive seekers of insights and information. As a result, marketers and branding professionals can communicate inexpensively with self-qualifiying readers/listeners in discreet market segments. BriefingsDirect podcasts hosted by Dana Gardner: Full turnkey planning, moderatiing, producing, hosting, and distribution via blogs and IT media partners of essential IT knowledge and understanding.

IoT & Smart Cities Stories
The deluge of IoT sensor data collected from connected devices and the powerful AI required to make that data actionable are giving rise to a hybrid ecosystem in which cloud, on-prem and edge processes become interweaved. Attendees will learn how emerging composable infrastructure solutions deliver the adaptive architecture needed to manage this new data reality. Machine learning algorithms can better anticipate data storms and automate resources to support surges, including fully scalable GPU-c...
Machine learning has taken residence at our cities' cores and now we can finally have "smart cities." Cities are a collection of buildings made to provide the structure and safety necessary for people to function, create and survive. Buildings are a pool of ever-changing performance data from large automated systems such as heating and cooling to the people that live and work within them. Through machine learning, buildings can optimize performance, reduce costs, and improve occupant comfort by ...
The explosion of new web/cloud/IoT-based applications and the data they generate are transforming our world right before our eyes. In this rush to adopt these new technologies, organizations are often ignoring fundamental questions concerning who owns the data and failing to ask for permission to conduct invasive surveillance of their customers. Organizations that are not transparent about how their systems gather data telemetry without offering shared data ownership risk product rejection, regu...
René Bostic is the Technical VP of the IBM Cloud Unit in North America. Enjoying her career with IBM during the modern millennial technological era, she is an expert in cloud computing, DevOps and emerging cloud technologies such as Blockchain. Her strengths and core competencies include a proven record of accomplishments in consensus building at all levels to assess, plan, and implement enterprise and cloud computing solutions. René is a member of the Society of Women Engineers (SWE) and a m...
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...