Welcome!

Java IoT Authors: Elizabeth White, Yeshim Deniz, Pat Romanski, Liz McMillan, Zakia Bouachraoui

Related Topics: @DXWorldExpo, Java IoT, @CloudExpo

@DXWorldExpo: Blog Feed Post

Translytical Database By @JnanDash | @BigDataExpo #BigData

Streaming analytics (real time) require a database that can do in-memory streaming for near-zero latency for complex data

This is a new term I learned this week, thanks to the Forrester analyst Mike Gualtieri. Terms like Translytics or Exalytics (Oracle’s phrase) do not roll off the tongue that easy. Mike defined Translytical as , “single unified database that supports transaction and analytics in real time without sacrificing transactional integrity, performance, and scale.”

[Transactions + Analytics = Translytical]

Those of us who saw the early days of Data Warehousing, we deliberately separated the two worlds so that analytics workloads do not interfere with transaction performance. Hence snapshots of operational data were taken to do data warehousing for offline batch analysis and reporting. Mostly that was getting a retro-view of what happened. In the current scheme of things, where data is coming fast and furious from so many sources, there is need to look at trends in real time and take action. Some insights are perishable, therefore need to be acted on immediately. All data originate fast, but analytics usually done much later. Perishable insights can have exponentially more value that after-the-fact traditional historical analysis. Here is a classification of analytics:

Past —- Learn (Descriptive Analytics)
Present —- Infer (Predictive Analytics), Detect (Streaming Analytics)
Future —– Action (Prescriptive Analytics).

Streaming analytics (real time) require a database that can do in-memory streaming for near-zero latency for complex data and analytical operations. The traditional approach of moving data to analytics has created many silos  such as CRM stack, BI stack or Mobile stack. Translytical databases are transactional as well as analytical. Point solutions like Spark data streaming which does micro batch processing are not the answer. Such a unified database must do in-memory processing (use RAM for real-time), multi-modal and support compression and tiered data as well.  Customers are stitching together open source products such as Spark, Kafka, and Cassandra to achieve streaming analytics, but it becomes a non-trivial programming task.

The only database claiming to be Translytical is VoltDB with functions such as: in-memory processing, scale-out with shared nothing, ACID compliance for transactional integrity, reliability and fault tolerance. It also has real time analytics built in combined with integration with Hadoop ecosystem.   Such a unified database has to prove its worth in the market.

So we have come full circle – from single database to more than one to handle both transactions and analytics; now back to single database doing both.

It makes logical sense, but let us watch and see if that works.

Read the original blog entry...

More Stories By Jnan Dash

Jnan Dash is Senior Advisor at EZShield Inc., Advisor at ScaleDB and Board Member at Compassites Software Solutions. He has lived in Silicon Valley since 1979. Formerly he was the Chief Strategy Officer (Consulting) at Curl Inc., before which he spent ten years at Oracle Corporation and was the Group Vice President, Systems Architecture and Technology till 2002. He was responsible for setting Oracle's core database and application server product directions and interacted with customers worldwide in translating future needs to product plans. Before that he spent 16 years at IBM. He blogs at http://jnandash.ulitzer.com.

IoT & Smart Cities Stories
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
Digital Transformation is much more than a buzzword. The radical shift to digital mechanisms for almost every process is evident across all industries and verticals. This is often especially true in financial services, where the legacy environment is many times unable to keep up with the rapidly shifting demands of the consumer. The constant pressure to provide complete, omnichannel delivery of customer-facing solutions to meet both regulatory and customer demands is putting enormous pressure on...
IoT is rapidly becoming mainstream as more and more investments are made into the platforms and technology. As this movement continues to expand and gain momentum it creates a massive wall of noise that can be difficult to sift through. Unfortunately, this inevitably makes IoT less approachable for people to get started with and can hamper efforts to integrate this key technology into your own portfolio. There are so many connected products already in place today with many hundreds more on the h...
The standardization of container runtimes and images has sparked the creation of an almost overwhelming number of new open source projects that build on and otherwise work with these specifications. Of course, there's Kubernetes, which orchestrates and manages collections of containers. It was one of the first and best-known examples of projects that make containers truly useful for production use. However, more recently, the container ecosystem has truly exploded. A service mesh like Istio addr...
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
Charles Araujo is an industry analyst, internationally recognized authority on the Digital Enterprise and author of The Quantum Age of IT: Why Everything You Know About IT is About to Change. As Principal Analyst with Intellyx, he writes, speaks and advises organizations on how to navigate through this time of disruption. He is also the founder of The Institute for Digital Transformation and a sought after keynote speaker. He has been a regular contributor to both InformationWeek and CIO Insight...
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
To Really Work for Enterprises, MultiCloud Adoption Requires Far Better and Inclusive Cloud Monitoring and Cost Management … But How? Overwhelmingly, even as enterprises have adopted cloud computing and are expanding to multi-cloud computing, IT leaders remain concerned about how to monitor, manage and control costs across hybrid and multi-cloud deployments. It’s clear that traditional IT monitoring and management approaches, designed after all for on-premises data centers, are falling short in ...
In his general session at 19th Cloud Expo, Manish Dixit, VP of Product and Engineering at Dice, discussed how Dice leverages data insights and tools to help both tech professionals and recruiters better understand how skills relate to each other and which skills are in high demand using interactive visualizations and salary indicator tools to maximize earning potential. Manish Dixit is VP of Product and Engineering at Dice. As the leader of the Product, Engineering and Data Sciences team at D...
Dynatrace is an application performance management software company with products for the information technology departments and digital business owners of medium and large businesses. Building the Future of Monitoring with Artificial Intelligence. Today we can collect lots and lots of performance data. We build beautiful dashboards and even have fancy query languages to access and transform the data. Still performance data is a secret language only a couple of people understand. The more busine...