Welcome!

Java Authors: Peter Silva, Elizabeth White, Trevor Parsons, Rex Morrow, Datical, Hovhannes Avoyan

Related Topics: Java

Java: Article

Using Inner Classes

Using Inner Classes

In JDK 1.1, no other new feature is likely to have more impact on Java programmers than the less-publicized inner classes feature. It'll change the way in which Java programs have been traditionally written. The primary goal of this feature is to provide the ability to declare classes within classes.

To incorporate the new inner classes syntax and scope rules, a few significant changes were made to the Java language specifications. However, no changes were made to the Java Virtual Machine. This is because the new compiler implements the inner classes syntax using Java 1.0, which has no inner classes. As a result, binary compatibility is still maintained with Java programs written in Java 1.0.

The inner classes syntax is somewhat complicated. This article will provide an informal introduction to the syntax and discuss how inner classes can be used. As a case study, the author converted an existing application to JDK 1.1 using inner classes. This application was originally developed for the article on Image Loading (JDJ Vol 1, Issue 3). See Figure 1.

Need for Inner Classes
You can always write Java programs without using inner classes. So, is this feature really needed?. We'll address this question through an example shown in Listings 1 and 2. Such situations typically occur in GUI programming.

Listing 1 shows a simplified version of code that implements the GUI for the application shown in Figure 1. The outer-most ImageViewer class needs the CommandPanel class to create the GUI. The CommandPanel class needs the DisplayCommand class to handle the dispBtn events. As you can see from the code, the ImageViewer object is passed as an argument to the CommandPanel class and the CommandPanel object is passed as an argument to the DisplayCommand class. This is done in order for the actionPerformed method to invoke the displayImage method in the ImageViewer.

Let's suppose we can declare the CommandPanel class within the ImageViewer class as shown in Listing 2. Similarly, the DisplayCommand class is within the CommandPanel class. The CommandPanel class can then be considered a member of the ImageViewer class. In the same way, the DisplayCommand class can be considered as a member of the CommandPanel class. It is evident from the example that there is no need to pass the calling class as an argument to the called class. Furthermore, by placing the CommandPanel class and the DisplayCommand class close to where they are used, readability is considerably improved.

Using inner classes, we can declare classes within the body of another class just as in Listing 2. Whether it is the handling of events or developing huge applications, inner classes can result in compact Java programs and improved readability.

Furthermore, the lack of pointers in Java is strongly felt in applications that need to employ asynchronous operations such as callbacks. Event handling is a form of callback. A variation of inner class, called anonymous classes, allows the declaration of a class itself to be passed as an argument to a method. For example, the entire body of the DisplayCommand class can be passed as an argument to the addActionListener method. Such capabilities would make the implementation of callbacks simple, concise and elegant.

In order to explain the inner classes syntax and terms, we'll use the contrived example shown in Listing 3. This example has a number of classes, each having at least one method that prints the name of the class.

Nesting of Classes
The inner classes feature allows classes to be nested. A nested class is always surrounded by another class. We'll call such a class the enclosing class. An inner class can have as many enclosing classes as there are levels of nesting. In a package, there will always be classes that do not have an enclosing class. We'll call such classes as top-most1 classes. A top-most class is a member of the package to which it belongs. In the Image Viewer example, the ImageViewer class is the top-most class. Classes defined using JDK 1.0 are all top-most classes and we know from the Java language specifications that such classes cannot be declared static.

The inner classes feature allows a class to be declared as a member of another class. Therefore, a class that is a member of the top-most class can be declared static. With the new language specifications, a top-most class can have both static and non-static classes as its members. With this in mind, we'll define two types of member classes: inner classes and top-level classes.

Top-Level Classes
According to the inner classes specifications[2], two types of classes can be called as top-level classes.
1. A top-most class; i.e., a class that is not enclosed by any other class
2. A static member of another top-level class

Alternatively, a top-level class can be defined as one that cannot directly access instance variables of other classes. In Listing 3, the OuterMost class is a top-level class, as are the StaticNestedOne and StaticNestedTwo classes. As we can see from this example, the static top-level classes can also be nested.

Inner Classes
According to the inner classes specifications[2], the following three types of classes are qualified to be called as inner classes.
1. A class that is declared as a non-static member of another class. We'll define such classes as member inner classes1. It is declared within the class body, but outside a block. In Listing 2, the CommandPanel class and the DisplayCommand class are the member inner classes of ImageViewer. In Listing 3, InnerOne and InnerTwo are the member inner classes of the OuterMost class.
2. A class declared within a block. Such classes are defined as local classes.
3. A class embedded in an expression. In such cases, inner classes do not require a name or constructor. Such classes are defined as anonymous classes.

An inner class itself can have non-static classes nested declared within its body. In Listing 3, InnerNestedOne is nested within InnerOne.

Interfaces also can be declared as inner classes. Unlike inner classes, inner interfaces can have a static final variable declared in them. In Listing 3, the IDPrinter interface is declared within the InnerOne class and it has a static final variable.

Member Inner Classes
In this section, we'll discuss different aspects of member inner classes.

Naming
As per the inner classes specifications, an inner class can not have the same name as its enclosing classes. Furthermore, its name can not be the same as the name of the package to which it belongs.

Modifiers
Just like the other members of a class, a member inner class can be declared with the following access modifiers: private, protected and public. If the no access modifier is associated with a class, the visibility is package. Inner classes can also be abstract or final. As per the definition of inner classes, neither the inner class nor it's members can be declared static.

Accessing Inner Class Members
Members of an inner class include non-static variables, methods and classes. Except for members with private scope, inner class members can be accessed/used by enclosing classes. With appropriate access modifiers, they can also be accessed/used by other classes within or outside the package.

In order to access or use an inner-class member, an enclosing class related qualifier is always required. When the inner-class member is a class, it is referred to as .. When it is a variable or method, it can be referenced from the enclosing scope as well as from outside using the notation .. See the Outside class in Listing 3 for examples.

Accessing Enclosing Class Members
Members of the enclosing classes can be accessed/used from its inner classes with or without explicit qualifiers.

Implicit Access
An inner class can directly access an enclosing class variable irrespective of its access modifier. Similarly, an inner class can use a class member of the enclosing class to create objects or for subclassing purposes. Just like variables, an inner class can use the class members in the enclosing scope irrespective of their access modifiers. In Listing 3, the printAllClasses method in the InnerNestedOne class uses a private class called InnerTwo in the enclosing scope to create an object and print its name.

Unlike variables and classes, inner classes cannot use the private methods in the enclosing scope. Trying to access private methods will result in compile-time error. But methods with protected, package and public scope can be used inside an inner class without any explicit qualifiers.

Explicit Reference
If an inner class or its super classes have a member which bears the same name/signature as the one in the enclosing scope, the enclosing name is hidden. In such cases, the enclosing member can be accessed using explicit qualifiers.

Within the inner class, its enclosing instance is referred to as .this. This notation is used for referring to its enclosing class variables and methods. In the ImageViewer example, the displayImage method can be accessed explicitly from the DisplayCommand class by: ImageViewer.this.displayImage(). Further clarifying the usage of this keyword, within the inner class it refers to the instance of the inner class itself. In the enclosing class, this refers to the enclosing class instance only.

A class member in the enclosing scope can be explicitly referred to as .. In Listing 3, the InnerTwo class can be referred to as OuterMost.InnerTwo.

There is a difference between implicit and explicit access as far as the variables are concerned. While the implicit reference allows access to variables with any type of modifiers, the explicit reference does not allow access to private variables. An explicit reference to a private variable is detected at the compile time itself.

Inheritance
A member inner class can extend a class and/or implement interfaces. The base classes or interfaces can reside within or outside the enclosing scope. Just like a top-level class, an inner class will inherit members (that includes member classes) from its super class. If an inner class has its own nested inner classes, those inner classes also inherit the super class members.

If a member with the same name and signature is available in its outer scope as well as in the super class, without the explicit reference, the super class member takes precedence over the outer scope. As mentioned before, an explicit reference is required whenever such a member in the enclosing scope needs to be used.

Constructing Inner Class Objects
Inner class can be constructed within as well as outside the enclosing scope. Within that scope, an inner object is created just like any other class in the package. However, outside the enclosing scope an instance of the enclosing class is required to instantiate an object from an inner class. This will involve two steps:
1. Creating enclosing class instances
2. Creating an inner class instance

The syntax is as follows: .new . If there are many layers of nesting, all the instances of the enclosing classes have to be in existence. In the example shown in Listing 3, the OuterMost and InnerOne instances are created before the InnerNestedOne object is created.

Extending Inner Classes
There are three different cases involved in extending an inner class:
1. Extending within the enclosing scope: Within the scope of an enclosing class, it is just like another class in the same package.
2. Extending outside the enclosing scope: Since an inner object can not exist without an instance of the enclosing class, the constructor for the inner class should have the enclosing class as one of the arguments. In addition, the first statement in the constructor should invoke the super class constructor with the following syntax: . super(). If the inner class that is extended has several layers of nesting, the enclosing instance immediately above the inner class is passed.

The InnerOneExtended class in Listing 4 extends the InnerNestedOne class. As you can see from the example, the constructor has its immediate instance as one of the arguments. It invokes the super class constructor by using the super keyword. You can also see that all of the enclosing instances need to be created in order to create an instance of the InnerOneExtended class.

3. Extending in inherited classes: A non-static top-level class can inherit inner classes. In the example shown in Listing 5, the OuterMost class is subclassed. Its subclasses automatically inherit non-private members including the inner classes. The InnerNestedOne class is subclassed and the printAllClasses method is overriden.

Local Classes
There are two types of local classes: Named and anonymous classes.

Named Local Classes
A named class is declared within a block, has a name and can have a constructor. Since local classes are not available outside the block, they can not be associated with any access modifiers. Associating an access modifier will result in a compile-time error. However, just like member inner classes, named local classes can be abstract or final, but can't be static.

Anonymous Classes
An anonymous class is an inner class that has no name or constructor. Why would you need such a class? With anonymous classes, it is possible to embed a chunk of code within an expression. A typical use would be to pass the anonymous class as an argument to a method.

No modifiers can be associated with an anonymous class. The syntax for the anonymous class starts with the keyword new. It is followed by the type, which can be either a class or an interface. Anonymous classes don't use the extends or implements keywords.

When an anonymous class is of the class type, it extends that class. The anonymous class can override the methods in the class it extends. In the example in Listing 6, the anonymous class is of WindowAdapter type, which is class in java.awt.event. It has several methods. The anonymous class in this example overrides the windowClosed method.

When an anonymous class is of the interface type, it has to implement that interface. In the dispBtn example in Listing7, the anonymous class is of ActionListener type. It implements the ActionPerformed method which is specified in the ActionListener interface. The ActionPerformed method is invoked only when dispBtn is pressed.

Anonymous classes are typically meant for a small chunk of code. Since they are not reusable, it is preferable to use a named class when the code size is large. Anonymous classes are extremely useful in event handling. Using anonymous classes, adapters can be declared exactly in the place they are used.

Whether it is a named or an anonymous class, the members of the enclosing class can be used with the same rules that are applicable to member inner classes. However, the local classes cannot access the non-final local variables in the enclosing code block because of potential synchronization problems. A local class object can exist even after the enclosing block has finished executing. In the examples in Listings 7 and 8, the anonymous class methods are invoked only when the corresponding event occurs. By that time, the createGUI methods would have finished executing.

An Application Using Inner Classes
The application shown in Figure 1 was originally developed using JDK 1.0. This was modified to use the new delegation event model and inner classes. In addition, a few more classes were added to include menus on the application frame.

There are two main GUI-related classes: CommandPanel and FrameMenubar. The CommandPanel class is the main GUI class which has three inner classes: ImageSelectPanel, CinePanel and StatsPanel. Each of these classes create a panel with AWT components. In these panels, anonymous classes are used to handle events originating from these components.

The FrameMenubar class creates a menu bar which contains three menus: File, Locale and Help. Each of the menus have several menu items. The Help menu has two menu items: Help and About. When clicked, these two menu items spawn dialog boxes. Listing 8 shows the adapter class for the About menu item. This class itself is an inner class of FrameMenubar which creates the about MenuItem component. Here, the AboutAdapter object is constructed and passed as an argument to the about MenuItem's addActionListener method.

The AboutAdapter class implements the actionPerformed method. In this method, a dialog box is constructed using the OkBox class, which is a subclass of the AWT Dialog component. Some variables in the enclosing class are passed as arguments to the OkBox constructor. This dialog box has an OK button. In order to register for the OK button action events, an anonymous class is passed as an argument to the addActionListener method. Note that this class also has the actionPerformed method. When the About menu item is clicked, the ActionPerformed method in the AboutAdapter is invoked. This would spawn a dialog box. When the OK button in the dialog box is clicked, the ActionPerformed method in the anonymous class is invoked. Upon execution of this code, the dialog box is closed. This example shows how adapters can be created within adapters using inner classes.

Conclusions
Although you can write Java programs without using inner classes, such programs would be bulky, less readable and often impractical (especially with the new event model). You can expect future applications/applets to make use of inner classes extensively. Java programs in such applications will look a lot different from programs written using the previous Java releases. While inner classes can be used anywhere, their use will be prominent in GUI-related programming and event handlers.

Using inner classes is not always easy. The syntax is often complicated and scope and visibility rules are not very intuitive. Once you cross these hurdles, it is hard to stop you from using this elegant feature.

References
1. Gosling J, Joy B and Steele G, "Javaª Language Specification", Addison-Wesley, 1996.
2. "Inner Classes in Javaª 1.1", Draft, Sun Microsystems, Nov., 1996.

More Stories By Lawrence Rodrigues

Lawrence Rodrigues is a senior consultant with Compuware Corp., Milwaukee. He has been developing Java applets and applications, is a contributor to the book "Professional Java: Fundamentals," by Wrox Press, and is also a judge at JARS. Besides Java, his current interests include Image Visualization and Analysis, Computational Geometry and Image Data Compression.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation and integration; and visibility through intelligent business operations and big data.
There will be 50 billion Internet connected devices by 2020. Today, every manufacturer has a propriety protocol and an app. How do we securely integrate these "things" into our lives and businesses in a way that we can easily control and manage? Even better, how do we integrate these "things" so that they control and manage each other so our lives become more convenient or our businesses become more profitable and/or safe? We have heard that the best interface is no interface. In his session at Internet of @ThingsExpo, Chris Matthieu, Co-Founder & CTO at Octoblu, Inc., will discuss how these devices generate enough data to learn our behaviors and simplify/improve our lives. What if we could connect everything to everything? I'm not only talking about connecting things to things but also systems, cloud services, and people. Add in a little machine learning and artificial intelligence and now we have something interesting...
Last week, while in San Francisco, I used the Uber app and service four times. All four experiences were great, although one of the drivers stopped for 30 seconds and then left as I was walking up to the car. He must have realized I was a blogger. None the less, the next car was just a minute away and I suffered no pain. In this article, my colleague, Ved Sen, Global Head, Advisory Services Social, Mobile and Sensors at Cognizant shares his experiences and insights.
We are reaching the end of the beginning with WebRTC and real systems using this technology have begun to appear. One challenge that faces every WebRTC deployment (in some form or another) is identity management. For example, if you have an existing service – possibly built on a variety of different PaaS/SaaS offerings – and you want to add real-time communications you are faced with a challenge relating to user management, authentication, authorization, and validation. Service providers will want to use their existing identities, but these will have credentials already that are (hopefully) irreversibly encoded. In his session at Internet of @ThingsExpo, Peter Dunkley, Technical Director at Acision, will look at how this identity problem can be solved and discuss ways to use existing web identities for real-time communication.
From telemedicine to smart cars, digital homes and industrial monitoring, the explosive growth of IoT has created exciting new business opportunities for real time calls and messaging. In his session at Internet of @ThingsExpo, Ivelin Ivanov, CEO and Co-Founder of Telestax, will share some of the new revenue sources that IoT created for Restcomm – the open source telephony platform from Telestax. Ivelin Ivanov is a technology entrepreneur who founded Mobicents, an Open Source VoIP Platform, to help create, deploy, and manage applications integrating voice, video and data. He is the co-founder of TeleStax, an Open Source Cloud Communications company that helps the shift from legacy IN/SS7 telco networks to IP-based cloud comms. An early investor in multiple start-ups, he still finds time to code for his companies and contribute to open source projects.
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. It also ensured scalability and better service for customers, including MUY! Companies, one of the country's largest franchise restaurant companies with 232 Pizza Hut locations. This is one example of WebRTC adoption today, but the potential is limitless when powered by IoT. Attendees will learn real-world benefits of WebRTC and explore future possibilities, as WebRTC and IoT intersect to improve customer service.
The Internet of Things (IoT) promises to create new business models as significant as those that were inspired by the Internet and the smartphone 20 and 10 years ago. What business, social and practical implications will this phenomenon bring? That's the subject of "Monetizing the Internet of Things: Perspectives from the Front Lines," an e-book released today and available free of charge from Aria Systems, the leading innovator in recurring revenue management.
The Internet of Things will put IT to its ultimate test by creating infinite new opportunities to digitize products and services, generate and analyze new data to improve customer satisfaction, and discover new ways to gain a competitive advantage across nearly every industry. In order to help corporate business units to capitalize on the rapidly evolving IoT opportunities, IT must stand up to a new set of challenges.
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at 6th Big Data Expo®, Hannah Smalltree, Director at Treasure Data, to discuss how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other machines.
All major researchers estimate there will be tens of billions devices – computers, smartphones, tablets, and sensors – connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. With major technology companies and startups seriously embracing IoT strategies, now is the perfect time to attend @ThingsExpo in Silicon Valley. Learn what is going on, contribute to the discussions, and ensure that your enterprise is as "IoT-Ready" as it can be!
P2P RTC will impact the landscape of communications, shifting from traditional telephony style communications models to OTT (Over-The-Top) cloud assisted & PaaS (Platform as a Service) communication services. The P2P shift will impact many areas of our lives, from mobile communication, human interactive web services, RTC and telephony infrastructure, user federation, security and privacy implications, business costs, and scalability. In his session at Internet of @ThingsExpo, Erik Lagerway, Co-founder of Hookflash, will walk through the shifting landscape of traditional telephone and voice services to the modern P2P RTC era of OTT cloud assisted services.
While great strides have been made relative to the video aspects of remote collaboration, audio technology has basically stagnated. Typically all audio is mixed to a single monaural stream and emanates from a single point, such as a speakerphone or a speaker associated with a video monitor. This leads to confusion and lack of understanding among participants especially regarding who is actually speaking. Spatial teleconferencing introduces the concept of acoustic spatial separation between conference participants in three dimensional space. This has been shown to significantly improve comprehension and conference efficiency.
The Internet of Things is tied together with a thin strand that is known as time. Coincidentally, at the core of nearly all data analytics is a timestamp. When working with time series data there are a few core principles that everyone should consider, especially across datasets where time is the common boundary. In his session at Internet of @ThingsExpo, Jim Scott, Director of Enterprise Strategy & Architecture at MapR Technologies, will discuss single-value, geo-spatial, and log time series data. By focusing on enterprise applications and the data center, he will use OpenTSDB as an example to explain some of these concepts including when to use different storage models.
SYS-CON Events announced today that Gridstore™, the leader in software-defined storage (SDS) purpose-built for Windows Servers and Hyper-V, will exhibit at SYS-CON's 15th International Cloud Expo®, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Gridstore™ is the leader in software-defined storage purpose built for virtualization that is designed to accelerate applications in virtualized environments. Using its patented Server-Side Virtual Controller™ Technology (SVCT) to eliminate the I/O blender effect and accelerate applications Gridstore delivers vmOptimized™ Storage that self-optimizes to each application or VM across both virtual and physical environments. Leveraging a grid architecture, Gridstore delivers the first end-to-end storage QoS to ensure the most important App or VM performance is never compromised. The storage grid, that uses Gridstore’s performance optimized nodes or capacity optimized nodes, starts with as few a...
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace. These technological reforms have not only changed computers and smartphones, but are also changing the data processing model for all information devices. In particular, in the area known as M2M (Machine-To-Machine), there are great expectations that information with a new type of value can be produced using a variety of devices and sensors saving/sharing data via the network and through large-scale cloud-type data processing. This consortium believes that attaching a huge number of devic...
Innodisk is a service-driven provider of industrial embedded flash and DRAM storage products and technologies, with a focus on the enterprise, industrial, aerospace, and defense industries. Innodisk is dedicated to serving their customers and business partners. Quality is vitally important when it comes to industrial embedded flash and DRAM storage products. That’s why Innodisk manufactures all of their products in their own purpose-built memory production facility. In fact, they designed and built their production center to maximize manufacturing efficiency and guarantee the highest quality of our products.
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. Over the summer Gartner released its much anticipated annual Hype Cycle report and the big news is that Internet of Things has now replaced Big Data as the most hyped technology. Indeed, we're hearing more and more about this fascinating new technological paradigm. Every other IT news item seems to be about IoT and its implications on the future of digital business.
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. Download Slide Deck: ▸ Here
BSQUARE is a global leader of embedded software solutions. We enable smart connected systems at the device level and beyond that millions use every day and provide actionable data solutions for the growing Internet of Things (IoT) market. We empower our world-class customers with our products, services and solutions to achieve innovation and success. For more information, visit www.bsquare.com.
With the iCloud scandal seemingly in its past, Apple announced new iPhones, updates to iPad and MacBook as well as news on OSX Yosemite. Although consumers will have to wait to get their hands on some of that new stuff, what they can get is the latest release of iOS 8 that Apple made available for most in-market iPhones and iPads. Originally announced at WWDC (Apple’s annual developers conference) in June, iOS 8 seems to spearhead Apple’s newfound focus upon greater integration of their products into everyday tasks, cross-platform mobility and self-monitoring. Before you update your device, here is a look at some of the new features and things you may want to consider from a mobile security perspective.