Click here to close now.

Welcome!

Java Authors: Irit Gillath, David Sprott, Elizabeth White, Pat Romanski, XebiaLabs Blog

Related Topics: Java

Java: Article

Looking Inside Stuck Threads

The transmigration of Java threads

Thread pooling is a common technique that modern application servers adopted to run Java applications efficiently. Even application servers not implemented by Java share the concept of using system resources more compactly to maximize overall throughput. Besides the underlying programming mystery of native OS threads, a Java thread object encapsulates some hurdles to easy-to-use and flexible synchronization at the programming level. JDK 5.0 has built-in thread pooling classes in its 'java.util.concurrent' package to facilitate programming the thread pool quickly. If we're using a J2EE application server, the container inherently enforces thread synchronization from its runtime nature. That means we don't have to fight difficult threading issues day and night, but it doesn't mean we can dismiss them. Instead, we should attend to the thread issues inside the code and the architecture. If we don't, system performance will degrade. A once well-running system will gradually become slower and slower, then application throughput will be blocked and external requests start to queue up. There's some degree of denial of service. In most commercial production environments like telecom, e-commerce and banking, this situation impacts the business and can create unplanned system outages.

While the server operator calls for help, an experienced engineer often asks something outstanding of the application environment. During the incident, we may see either ultra-high or ultra-low CPU usage at the OS level along with applications hanging and threads sticking at the JVM level from a three-dimensional viewpoint. How does one disclose the bottleneck and abnormality at the JVM level? The answer is: When the problem is reproducible then a commercial productive profiling tool or remotely debugging the JVM is an option. But taking copies of the thread dumps is widely used because it's straightforward and instantaneous. And it involves the least overhead.

Thread dumps provide a snapshot of the JVM internals at a special point at a minimal cost. We may give the JVM hosting the applications a signal SIG-QUIT with the JVM process ID (PID) on a Unix-like system (e.g., kill -3 xxxxxx; where 'xxxxxx' is the JVM PID) or have a control-break on the Windows Java console ask the JVM to output its thread information in detail to a standard output when the JVM didn't start in company with a '-Xrs' option before. Due to the importance of the thread dump, it's best to redirect the standard output to a file or pipe the information to a utility that can store and rotate the standard output to log files (see Figure1).

A JVM has a complementary function that enables it to get the thread dump at the undocumented C API level. (We can look at the Java source code that Sun released recently under the GPL to see this feature.) We may utilize this API for a simple debugging framework to address many common issues inside the application. But it requires a JNI implementation in C because there's no pure Java API to force the JVM to generate the thread dump, though we may get similar thread stack traces in JDK 5.0 via the 'getAllStackTraces()' API. Despite this tricky function, we're interested in a snapshot of the thread dump while we have identified the stuck threads (see Figure 2).

With copies of the thread dump collected at intervals of seconds, we may identify the stuck threads from the running state of each thread in the thread pool. Fortunately, some application servers do an automatic health check on the application thread pools. In fact, it acts like a watchdog that periodically check the last running statistics on the threads in the thread pools. Once the threads have run for fixed long-running seconds, it will print out the execution information on the stuck threads either in standard output or log files. Second, some platform JDK vendors have out their diagnostic utilities in the public domain to aid us in detecting stuck threads (e.g., HP's JMeter and IBM's thread analyzer). However, once we isolate the stuck threads, we'll have to figure out why they got stuck from the information (i.e., the stack traces of these stuck threads) about what they were doing when they got stuck. This way we can improve code quality and tier architecture in the next iteration (see Figure 3).

A stuck thread means a thread is blocked and can't return to the thread pool smoothly in a given period of time. When an application thread is blocked unintentionally, it means it can't quickly complete its dispatch and be reused. In most of production situations, the root cause of these stuck threads is also the root cause of bad system performance because it interferes with regular task execution. [It's also a performance issue for producers and healthy consumers. < 1 ] (request frequency) < (healthy thread count for request execution/average measured request execution time per healthy thread.]

Blocking without specifying a network connect or read timeout is the most frequent reason we have seen. When we don't manually configure a timeout for each method call involving networking, it will have a potential blocking behavior by the underlying physical socket read/connect characteristic. While waiting infinitely for the response from the other side, the native OS networking layer probably throws an I/O exception. By default this behavior takes an unexpectedly long time (e.g., 240 seconds). Modern distributed systems need to factor in this situation (especially, Web Services invocations). Though we may set timeouts for well-known protocols via some system properties (e.g., sun.net.client.defaultConnectTimeout and sun.net.client.defaultReadTimeout), the newer version of JDK might provide a generic mechanism to explicitly configure each default timeout value for those whose methods call socket connect/read as a security policy file. For example, com.sun.jndi.ldap.read.timeout (http://java.sun.com/docs/books/tutorial/jndi/newstuff/readtimeout.html) wasn't available prior to JDK 6.0 for LDAP service provider read timeout. Otherwise, when the problematic code isn't under the control of end users, it usually needs to restart the application to temporarily reset the abnormal phenomenon propagated from the other side. In addition, we should take into account whether the service we called is idempotent while analyzing this kind of issue in the design phase because we don't know whether the service at the other end keeps executing when the thread has ended its invocation after a timeout (see Figure 4).

The unexpectedly long execution time of a SQL statement is a common condition that causes a stuck thread. In the thread dump we collected, we can see that the stuck thread was running a network socket read for a long time without changes and the thread's stack trace contains many JDBC driver classes. Under these conditions, we can also check the status of the database it connected with and set the query timeout for all application code using a JDBC statement setQueryTimeout method. (Most JDBC drivers support this feature but we'd have to read the JDBC driver's release note first.) According to the different nature of every SQL query, it would be better to segregate the programs that have a longer execution time in another thread pool and tune the database table with indices for faster access. We would also need to check whether the JDBC driver is certified with the connected database. A sub-issue is the accessed table locked by other processes so the threads for the JDBC query couldn't continue because of table locking.

Resource contention is an issue that's hard to find if we don't get the entire thread dump to analyze. Basically, it's an issue of producers and consumers. Any limited resources on the system (JDBC connections, socket connections, etc.) will impact this issue. The best thing to do is look at the thread dump, get the stuck thread name from the log, and find the bottleneck that's causing the stuck thread.

File descriptor leaking is an issue that causes this phenomenon (Note that a Unix socket implementation requires a file descriptor). So the JVM should have enough file descriptor numbers to host our applications. Generally, we can adjust the open file limit with the Unix shell 'ulimit' command for the current shell. And we can list the open files with the public domain 'lsof' tool. It's intensely interesting that many developers don't explicitly use the 'close()' method in the final block when an object inherently provides a 'close()' method and want JVM to release these unclosed objects when garbage is collected. We should keep firmly in mind that that act is bad without closing the system resource after use. A special case is when the socket connections in the application don't close properly while still being underdeployed and then the application begins to throw an IOException with a 'Too many open files' message after repeated application redeployment.


More Stories By Patrick Yeh

Patrick Yeh (WEN-PIN, YEH) A senior technical consultant of BEA Systems, Taiwan for solving the critical production issues. The core value of this position is to provide the solid technical power on problem solving and to reduce the customer's downtime losses that may have a critical impact on their business (+4 years).

Comments (2) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
Patrick 08/03/07 04:21:08 AM EDT

My friends,
if you need the source code on this article, please give me an email ([email protected])with title named 'Source code about looking inside stuck threads' !

Omar 04/09/07 04:10:36 PM EDT

Hi Patrick,

First of all, excellent article!! Very informative and practical.

You make reference of a utility to monitor stack threads. Where can I download this utility? There seems to be a .jar file an a shared library.

Thanking you in advance,
Omar

@ThingsExpo Stories
Analytics is the foundation of smart data and now, with the ability to run Hadoop directly on smart storage systems like Cloudian HyperStore, enterprises will gain huge business advantages in terms of scalability, efficiency and cost savings as they move closer to realizing the potential of the Internet of Things. In his session at 16th Cloud Expo, Paul Turner, technology evangelist and CMO at Cloudian, Inc., will discuss the revolutionary notion that the storage world is transitioning from mere Big Data to smart data. He will argue that today’s hybrid cloud storage solutions, with commodity...
Cloud data governance was previously an avoided function when cloud deployments were relatively small. With the rapid adoption in public cloud – both rogue and sanctioned, it’s not uncommon to find regulated data dumped into public cloud and unprotected. This is why enterprises and cloud providers alike need to embrace a cloud data governance function and map policies, processes and technology controls accordingly. In her session at 15th Cloud Expo, Evelyn de Souza, Data Privacy and Compliance Strategy Leader at Cisco Systems, will focus on how to set up a cloud data governance program and s...
Roberto Medrano, Executive Vice President at SOA Software, had reached 30,000 page views on his home page - http://RobertoMedrano.SYS-CON.com/ - on the SYS-CON family of online magazines, which includes Cloud Computing Journal, Internet of Things Journal, Big Data Journal, and SOA World Magazine. He is a recognized executive in the information technology fields of SOA, internet security, governance, and compliance. He has extensive experience with both start-ups and large companies, having been involved at the beginning of four IT industries: EDA, Open Systems, Computer Security and now SOA.
Every innovation or invention was originally a daydream. You like to imagine a “what-if” scenario. And with all the attention being paid to the so-called Internet of Things (IoT) you don’t have to stretch the imagination too much to see how this may impact commercial and homeowners insurance. We’re beyond the point of accepting this as a leap of faith. The groundwork is laid. Now it’s just a matter of time. We can thank the inventors of smart thermostats for developing a practical business application that everyone can relate to. Gone are the salad days of smart home apps, the early chalkb...
The industrial software market has treated data with the mentality of “collect everything now, worry about how to use it later.” We now find ourselves buried in data, with the pervasive connectivity of the (Industrial) Internet of Things only piling on more numbers. There’s too much data and not enough information. In his session at @ThingsExpo, Bob Gates, Global Marketing Director, GE’s Intelligent Platforms business, to discuss how realizing the power of IoT, software developers are now focused on understanding how industrial data can create intelligence for industrial operations. Imagine ...
We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
Operational Hadoop and the Lambda Architecture for Streaming Data Apache Hadoop is emerging as a distributed platform for handling large and fast incoming streams of data. Predictive maintenance, supply chain optimization, and Internet-of-Things analysis are examples where Hadoop provides the scalable storage, processing, and analytics platform to gain meaningful insights from granular data that is typically only valuable from a large-scale, aggregate view. One architecture useful for capturing and analyzing streaming data is the Lambda Architecture, representing a model of how to analyze rea...
SYS-CON Events announced today that Vitria Technology, Inc. will exhibit at SYS-CON’s @ThingsExpo, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Vitria will showcase the company’s new IoT Analytics Platform through live demonstrations at booth #330. Vitria’s IoT Analytics Platform, fully integrated and powered by an operational intelligence engine, enables customers to rapidly build and operationalize advanced analytics to deliver timely business outcomes for use cases across the industrial, enterprise, and consumer segments.
Today’s enterprise is being driven by disruptive competitive and human capital requirements to provide enterprise application access through not only desktops, but also mobile devices. To retrofit existing programs across all these devices using traditional programming methods is very costly and time consuming – often prohibitively so. In his session at @ThingsExpo, Jesse Shiah, CEO, President, and Co-Founder of AgilePoint Inc., discussed how you can create applications that run on all mobile devices as well as laptops and desktops using a visual drag-and-drop application – and eForms-buildi...
Docker is an excellent platform for organizations interested in running microservices. It offers portability and consistency between development and production environments, quick provisioning times, and a simple way to isolate services. In his session at DevOps Summit at 16th Cloud Expo, Shannon Williams, co-founder of Rancher Labs, will walk through these and other benefits of using Docker to run microservices, and provide an overview of RancherOS, a minimalist distribution of Linux designed expressly to run Docker. He will also discuss Rancher, an orchestration and service discovery platf...
Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities. Accordingly, attendees at the upcoming 16th Cloud Expo at the Javits Center in New York June 9-11 will find fresh new content in a new track called PaaS | Containers & Microservices Containers are not being considered for the first time by the cloud community, but a current era of re-consideration has pushed them to the top of the cloud agenda. With the launch of Docker's initial release in March of 2013, interest was revved up several notches. Then late last...
SYS-CON Events announced today that Dyn, the worldwide leader in Internet Performance, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Dyn is a cloud-based Internet Performance company. Dyn helps companies monitor, control, and optimize online infrastructure for an exceptional end-user experience. Through a world-class network and unrivaled, objective intelligence into Internet conditions, Dyn ensures traffic gets delivered faster, safer, and more reliably than ever.
CommVault has announced that top industry technology visionaries have joined its leadership team. The addition of leaders from companies such as Oracle, SAP, Microsoft, Cisco, PwC and EMC signals the continuation of CommVault Next, the company's business transformation for sales, go-to-market strategies, pricing and packaging and technology innovation. The company also announced that it had realigned its structure to create business units to more directly match how customers evaluate, deploy, operate, and purchase technology.
In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect at GE, and Ibrahim Gokcen, who leads GE's advanced IoT analytics, focused on the Internet of Things / Industrial Internet and how to make it operational for business end-users. Learn about the challenges posed by machine and sensor data and how to marry it with enterprise data. They also discussed the tips and tricks to provide the Industrial Internet as an end-user consumable service using Big Data Analytics and Industrial Cloud.
The explosion of connected devices / sensors is creating an ever-expanding set of new and valuable data. In parallel the emerging capability of Big Data technologies to store, access, analyze, and react to this data is producing changes in business models under the umbrella of the Internet of Things (IoT). In particular within the Insurance industry, IoT appears positioned to enable deep changes by altering relationships between insurers, distributors, and the insured. In his session at @ThingsExpo, Michael Sick, a Senior Manager and Big Data Architect within Ernst and Young's Financial Servi...
Performance is the intersection of power, agility, control, and choice. If you value performance, and more specifically consistent performance, you need to look beyond simple virtualized compute. Many factors need to be considered to create a truly performant environment. In his General Session at 15th Cloud Expo, Harold Hannon, Sr. Software Architect at SoftLayer, discussed how to take advantage of a multitude of compute options and platform features to make cloud the cornerstone of your online presence.
Even as cloud and managed services grow increasingly central to business strategy and performance, challenges remain. The biggest sticking point for companies seeking to capitalize on the cloud is data security. Keeping data safe is an issue in any computing environment, and it has been a focus since the earliest days of the cloud revolution. Understandably so: a lot can go wrong when you allow valuable information to live outside the firewall. Recent revelations about government snooping, along with a steady stream of well-publicized data breaches, only add to the uncertainty
The explosion of connected devices / sensors is creating an ever-expanding set of new and valuable data. In parallel the emerging capability of Big Data technologies to store, access, analyze, and react to this data is producing changes in business models under the umbrella of the Internet of Things (IoT). In particular within the Insurance industry, IoT appears positioned to enable deep changes by altering relationships between insurers, distributors, and the insured. In his session at @ThingsExpo, Michael Sick, a Senior Manager and Big Data Architect within Ernst and Young's Financial Servi...
PubNub on Monday has announced that it is partnering with IBM to bring its sophisticated real-time data streaming and messaging capabilities to Bluemix, IBM’s cloud development platform. “Today’s app and connected devices require an always-on connection, but building a secure, scalable solution from the ground up is time consuming, resource intensive, and error-prone,” said Todd Greene, CEO of PubNub. “PubNub enables web, mobile and IoT developers building apps on IBM Bluemix to quickly add scalable realtime functionality with minimal effort and cost.”
The Internet of Things (IoT) is rapidly in the process of breaking from its heretofore relatively obscure enterprise applications (such as plant floor control and supply chain management) and going mainstream into the consumer space. More and more creative folks are interconnecting everyday products such as household items, mobile devices, appliances and cars, and unleashing new and imaginative scenarios. We are seeing a lot of excitement around applications in home automation, personal fitness, and in-car entertainment and this excitement will bleed into other areas. On the commercial side, m...