Welcome!

Java Authors: Yeshim Deniz, Liz McMillan, Carmen Gonzalez, Yakov Fain, Gil Allouche

Related Topics: Java

Java: Article

Improved Observer/ Observable

Improved Observer/ Observable

The Observer Design Pattern is among the most useful for object-oriented software design. The JDK itself makes heavy use of a variant of this pattern in the 1.1 AWT event delegation model. The JDK also provides a reusable embodiment of the pattern in the form of the java.util.Observer interface and the java.util.Observable class. If you've done much serious Java programming you've more than likely had occasion to use these classes.

The idea of the pattern is to model a one-to-many dependency without tightly coupling the observed object with its many observers. When the observed object changes in some interesting way it can automatically notify all of its observers without knowing them directly. For more on this pattern, see Qusay Mahmoud's article, "Implementing Design Patterns in Java" (JDJ, Vol. 2, Iss. 5), or the Design Patterns book.

Unfortunately, a number of weaknesses have been identified in the JDK's Observer/Observable classes. Peter Coad and Mark Mayfield discuss some of these weaknesses in their excellent book, Java Design. These weaknesses significantly limit the reusability and power of the classes, which is a shame since powerful reusability is a big part of what object-oriented design is all about.

Most of the weaknesses are due to the fact that java.util.Observable is a class rather than an interface; or rather, that it is a class without a corresponding interface. This implies that the only way to reuse Observable is to subclass it. You can't take an existing class and tack on the role of Observable by having it implement an Observable interface because there is no Observable interface.

What if you have a class that is already in a class hierarchy and also needs to play the role of an Observable? Since Java doesn't support multiple inheritance, you're out of luck. That class cannot extend from Observable because it is already extending from some other class.

It also means that you are stuck with the one and only implementation of Observable in java.util.Observable. For a variety of reasons, you may want to use an alternate implementation - e.g., to do the notification in a separate thread or in a particular order. You may even want to vary the implementation of Observable at runtime. There is no Observable interface for your alternate implementations to implement. You cannot reuse Observable by composition so you cannot vary the composed Observable implementation at runtime.

The designers of the Observable class broke two general principles of object-oriented design with Java. The first principle is to design with interfaces rather than classes. Whenever possible, avoid committing yourself to a particular implementation of an interface. The second principle is to favor reuse by composition over reuse by inheritance unless a class hierarchy is clearly indicated. By omitting an Observable interface and making some of its methods protected, the designers made it impossible to reuse Observable by composition.

A minor weakness in Observable is the necessity to call setChanged() before notifySubscribers(). The intention there seems to be to eliminate needless notifications in cases where there is no interesting change to the Observable. There may be situations in which this two-stage notification is appropriate, but it isn't the simplest case and programmers shouldn't be forced to use this implementation in all situations. Also, setChanged() is protected, further reinforcing the necessity to reuse the class only by inheritance.

Now let's look at the Observer interface. The weakness here is its tight coupling with the Observable class. The first parameter to the update() method is unnecessarily typed as an Observable. If it were typed more generally as a simple Object, the Observer interface would be more reusable. It then could be used with any Observable implementation or even in any situation, completely unrelated to Observer/Observable, which called for a void method with two Object parameters.

Despite all these weaknesses, I was initially reluctant to ignore the JDK classes in favor of the homegrown replacements suggested by Coad and Mayfield. After all, the JDK classes are already locally available to every VM and they do serve their purpose nicely for the majority of cases. On the other hand, designing for maximal reuse is crucial to the success of any object-oriented design. A little forethought early in the game can lead to great savings down the road. Luckily, when I started a new project some months ago, I decided to take the plunge and start using the improved classes.

More recently I began designing a number of distributed three-tier Java apps using Remote Method Invocation (RMI). It turns out that the Observer pattern has great application to remote applications. A remote object that lives on the server often needs to be observed by multiple objects living on multiple clients. When the remote object changes, all clients need to find out in order to, for example, update the user's view.

The JDK's Observer/Observable classes are of no use here. They do not extend from java.rmi.Remote and their method signatures do not allow for the possible throwing of RemoteException. Both of these are required of any Remote interface for RMI. So the JDK's Observable/Observer classes can never be implemented as an RMI remote interface of a RemoteObject.

The solution that I've seen in articles and books is to write a separate set of classes for Remote Observable/Observer. This always seemed wrong to me. Why should I have to write, support and use two disjoint sets of classes to do basically the same thing albeit in different situations? What if I have a class that needs to notify both local and remote Observers? You mean it has to implement both versions of Observable?!

Having already severed my dependence on the JDK's Observable classes, I was able to painlessly enhance my classes to support Remote Method Invocation. The same classes can now be used for local Observers as well as remote Observers or even for a mixture of remote and local Observers.

The interfaces are shown in Listing 1. In order to avoid confusion with the JDK classes, I use the synonymous terminology of Publisher/Subscriber rather than Observable/Observer.

Notice that the Publisher and Subscriber interfaces extend from java.rmi.Remote and all their methods may throw RemoteException. This is so that these interfaces may be implemented by remote classes for use with RMI. These additions do not preclude these classes from being used in a strictly local situation without RMI. In fact, the same Publisher could be used to publish to a mixture of local and remote Subscribers.

A simple basic implementation of Publisher is presented in Listing 2. This Publisher can be used for both local and remote Subscribers.

The notifySubscribers() method deserves some elaboration. The call to the Subscribers' update() method is in a try/catch clause to deal with possibly thrown RemoteExceptions. Two particular RemoteExceptions, ConnectException and NoSuchObjectException, are considered serious enough to consider the Subscriber to be dead. Subscribers that are considered dead are removed from the list of Subscribers for this Publisher. Other RemoteExceptions may be indications of transient failures that could correct themselves. This is the type of fuzzy logic you need to apply in networked situations where errors are unpredictable and non-deterministic.

The dead Subscribers are not removed from the list of Subscribers until after the list is enumerated. At first glance you might ask, why not remove the dead Observers right away, within the catch clauses? This is because of a quirk in java.util.Vector that makes it unsafe to manipulate a Vector while it is being enumerated. This quirk (bug?) is a discussion for another time, but a few words about the workaround I chose are warranted here.

As I discover Subscribers that are to be considered dead, I accumulate them in a Vector. Only after enumeration of all Subscribers do I go through the Vector of dead Subscribers and actually remove them. Another workaround that I could have used is to clone the Vector of Subscribers before enumerating it. Then I could operate on the original Vector while enumerating the clone. I chose the workaround I did because it has little overhead for the more usual case when no RemoteException is thrown. Even the deadSubs Vector is not allocated until and unless it is needed. This technique is known as lazy instantiation.

The preferred way to reuse BasicPublisher is by composition. Any class that needs to play the role of a Publisher should implement the Publisher interface and include a reference to an instance of BasicPublisher to do the work of a Publisher. Listing 3 is a rough outline of this.

Class XX is free to extend from some other class if it needs to and it can publish changes to subscribers, whether local or remote, by calling pub.notifySubscribers(). You can also reuse BasicPublisher by subclassing it, but this is not the preferred way. It eliminates the need to delegate the Publisher interface but it reduces the extendibility of the class because the class can no longer be a subclass of any other class.

To use these classes with RMI, the classes that implement Publisher and Subscriber must be remote objects. Without going into too much detail on RMI, let me just point out that any class can be made remote in two simple steps. First, add the following to its constructor:

UnicastRemoteObject.exportObject(this);

and recompile. Second, run the rmic post compiler on the class. That's it. Your class is now remote. Remote publishers can now publish changes to local subscribers in the same VM or to remote subscribers in other VMs.

In summary, these two interfaces and class constitute a far more powerful and reusable embodiment of the Observer design pattern than the JDK's Observer/Observable. They can even be used for remote Observers with RMI. This is just the sort of weapon in your object-oriented arsenal that makes Java programming such a joy.

References
Gamma, E., Johnson, R. and Vlissides, J., "Design Patterns: Elements of Object-Oriented Architecture", Addison-Wesley, Reading, MA, 1995.
Coad , P. and Mayfield, M., "Java Design: Building Better Apps and Applets", Yourdon Press, Upper Saddle River, NJ, 1997.

More Stories By Steven Schwell

Steven Schwell is a Senior Developer and Java Guru in the New York office of Micromuse, Inc., a leading provider of Service Level Management software. Steve is currently developing a number of large distributed Java apps. He holds a M.S. in Computer Science from Columbia University.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
The Internet of Things (IoT) is making everything it touches smarter – smart devices, smart cars and smart cities. And lucky us, we’re just beginning to reap the benefits as we work toward a networked society. However, this technology-driven innovation is impacting more than just individuals. The IoT has an environmental impact as well, which brings us to the theme of this month’s #IoTuesday Twitter chat. The ability to remove inefficiencies through connected objects is driving change throughout every sector, including waste management. BigBelly Solar, located just outside of Boston, is trans...
SYS-CON Events announced today that Matrix.org has been named “Silver Sponsor” of Internet of @ThingsExpo, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Matrix is an ambitious new open standard for open, distributed, real-time communication over IP. It defines a new approach for interoperable Instant Messaging and VoIP based on pragmatic HTTP APIs and WebRTC, and provides open source reference implementations to showcase and bootstrap the new standard. Our focus is on simplicity, security, and supporting the fullest feature set.
Predicted by Gartner to add $1.9 trillion to the global economy by 2020, the Internet of Everything (IoE) is based on the idea that devices, systems and services will connect in simple, transparent ways, enabling seamless interactions among devices across brands and sectors. As this vision unfolds, it is clear that no single company can accomplish the level of interoperability required to support the horizontal aspects of the IoE. The AllSeen Alliance, announced in December 2013, was formed with the goal to advance IoE adoption and innovation in the connected home, healthcare, education, aut...
SYS-CON Events announced today that Red Hat, the world's leading provider of open source solutions, will exhibit at Internet of @ThingsExpo, which will take place on November 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA. Red Hat is the world's leading provider of open source software solutions, using a community-powered approach to reliable and high-performing cloud, Linux, middleware, storage and virtualization technologies. Red Hat also offers award-winning support, training, and consulting services. As the connective hub in a global network of enterprises, partners, a...

SUNNYVALE, Calif., Oct. 20, 2014 /PRNewswire/ -- Spansion Inc. (NYSE: CODE), a global leader in embedded systems, today added 96 new products to the Spansion® FM4 Family of flexible microcontrollers (MCUs). Based on the ARM® Cortex®-M4F core, the new MCUs boast a 200 MHz operating frequency and support a diverse set of on-chip peripherals for enhanced human machine interfaces (HMIs) and machine-to-machine (M2M) communications. The rich set of periphera...

The only place to be June 9-11 is Cloud Expo & @ThingsExpo 2015 East at the Javits Center in New York City. Join us there as delegates from all over the world come to listen to and engage with speakers & sponsors from the leading Cloud Computing, IoT & Big Data companies. Cloud Expo & @ThingsExpo are the leading events covering the booming market of Cloud Computing, IoT & Big Data for the enterprise. Speakers from all over the world will be hand-picked for their ability to explore the economic strategies that utility/cloud computing provides. Whether public, private, or in a hybrid form, clo...
Software AG helps organizations transform into Digital Enterprises, so they can differentiate from competitors and better engage customers, partners and employees. Using the Software AG Suite, companies can close the gap between business and IT to create digital systems of differentiation that drive front-line agility. We offer four on-ramps to the Digital Enterprise: alignment through collaborative process analysis; transformation through portfolio management; agility through process automation and integration; and visibility through intelligent business operations and big data.
Be Among the First 100 to Attend & Receive a Smart Beacon. The Physical Web is an open web project within the Chrome team at Google. Scott Jenson leads a team that is working to leverage the scalability and openness of the web to talk to smart devices. The Physical Web uses bluetooth low energy beacons to broadcast an URL wirelessly using an open protocol. Nearby devices can find all URLs in the room, rank them and let the user pick one from a list. Each device is, in effect, a gateway to a web page. This unlocks entirely new use cases so devices can offer tiny bits of information or simple i...
The Transparent Cloud-computing Consortium (abbreviation: T-Cloud Consortium) will conduct research activities into changes in the computing model as a result of collaboration between "device" and "cloud" and the creation of new value and markets through organic data processing High speed and high quality networks, and dramatic improvements in computer processing capabilities, have greatly changed the nature of applications and made the storing and processing of data on the network commonplace.
The Internet of Things (IoT) is going to require a new way of thinking and of developing software for speed, security and innovation. This requires IT leaders to balance business as usual while anticipating for the next market and technology trends. Cloud provides the right IT asset portfolio to help today’s IT leaders manage the old and prepare for the new. Today the cloud conversation is evolving from private and public to hybrid. This session will provide use cases and insights to reinforce the value of the network in helping organizations to maximize their company’s cloud experience.
Things are being built upon cloud foundations to transform organizations. This CEO Power Panel at 15th Cloud Expo, moderated by Roger Strukhoff, Cloud Expo and @ThingsExpo conference chair, will address the big issues involving these technologies and, more important, the results they will achieve. How important are public, private, and hybrid cloud to the enterprise? How does one define Big Data? And how is the IoT tying all this together?
TechCrunch reported that "Berlin-based relayr, maker of the WunderBar, an Internet of Things (IoT) hardware dev kit which resembles a chunky chocolate bar, has closed a $2.3 million seed round, from unnamed U.S. and Switzerland-based investors. The startup had previously raised a €250,000 friend and family round, and had been on track to close a €500,000 seed earlier this year — but received a higher funding offer from a different set of investors, which is the $2.3M round it’s reporting."
The Industrial Internet revolution is now underway, enabled by connected machines and billions of devices that communicate and collaborate. The massive amounts of Big Data requiring real-time analysis is flooding legacy IT systems and giving way to cloud environments that can handle the unpredictable workloads. Yet many barriers remain until we can fully realize the opportunities and benefits from the convergence of machines and devices with Big Data and the cloud, including interoperability, data security and privacy.
All major researchers estimate there will be tens of billions devices - computers, smartphones, tablets, and sensors - connected to the Internet by 2020. This number will continue to grow at a rapid pace for the next several decades. Over the summer Gartner released its much anticipated annual Hype Cycle report and the big news is that Internet of Things has now replaced Big Data as the most hyped technology. Indeed, we're hearing more and more about this fascinating new technological paradigm. Every other IT news item seems to be about IoT and its implications on the future of digital busines...
Cultural, regulatory, environmental, political and economic (CREPE) conditions over the past decade are creating cross-industry solution spaces that require processes and technologies from both the Internet of Things (IoT), and Data Management and Analytics (DMA). These solution spaces are evolving into Sensor Analytics Ecosystems (SAE) that represent significant new opportunities for organizations of all types. Public Utilities throughout the world, providing electricity, natural gas and water, are pursuing SmartGrid initiatives that represent one of the more mature examples of SAE. We have s...
The Internet of Things needs an entirely new security model, or does it? Can we save some old and tested controls for the latest emerging and different technology environments? In his session at Internet of @ThingsExpo, Davi Ottenheimer, EMC Senior Director of Trust, will review hands-on lessons with IoT devices and reveal privacy options and a new risk balance you might not expect.
IoT is still a vague buzzword for many people. In his session at Internet of @ThingsExpo, Mike Kavis, Vice President & Principal Cloud Architect at Cloud Technology Partners, will discuss the business value of IoT that goes far beyond the general public's perception that IoT is all about wearables and home consumer services. The presentation will also discuss how IoT is perceived by investors and how venture capitalist access this space. Other topics to discuss are barriers to success, what is new, what is old, and what the future may hold.
Swiss innovators dizmo Inc. launches its ground-breaking software, which turns any digital surface into an immersive platform. The dizmo platform seamlessly connects digital and physical objects in the home and at the workplace. Dizmo breaks down traditional boundaries between device, operating systems, apps and software, transforming the way users work, play and live. It supports orchestration and collaboration in an unparalleled way enabling any data to instantaneously be accessed on any surface, anywhere and made interactive. Dizmo brings fantasies as seen in Sci-fi movies such as Iro...
There’s Big Data, then there’s really Big Data from the Internet of Things. IoT is evolving to include many data possibilities like new types of event, log and network data. The volumes are enormous, generating tens of billions of logs per day, which raise data challenges. Early IoT deployments are relying heavily on both the cloud and managed service providers to navigate these challenges. In her session at 6th Big Data Expo®, Hannah Smalltree, Director at Treasure Data, to discuss how IoT, Big Data and deployments are processing massive data volumes from wearables, utilities and other mach...
This Internet of Nouns trend is still in the early stages and many of our already connected gadgets do provide human benefits over the typical infotainment. Internet of Things or IoT. You know, where everyday objects have software, chips, and sensors to capture data and report back. Household items like refrigerators, toilets and thermostats along with clothing, cars and soon, the entire home will be connected. Many of these devices provide actionable data - or just fun entertainment - so people can make decisions about whatever is being monitored. It can also help save lives.