Click here to close now.


Java IoT Authors: Elizabeth White, Liz McMillan, Chris Fleck, AppDynamics Blog, Jayaram Krishnaswamy

Related Topics: Java IoT

Java IoT: Article

Java Performance I/O Tuning

Java Performance I/O Tuning

Many Java programs that utilize I/O are excellent candidates for performance tuning. One of the more common problems in Java applications is inefficient I/O. A profile of Java applications and applets that handle significant volumes of data will show significant time spent in I/O routines, implying substantial gains can be had from I/O performance tuning. In fact, the I/O performance issues usually overshadow all other performance issues, making them the first area to concentrate on when tuning performance. Therefore, I/O efficiency should be a high priority for developers looking to optimally increase performance. Unfortunately, optimal reading and writing can be challenging in Java.

Once an application's reliance upon I/O is established and I/O is determined to account for a substantial slice of the applications execution time, performance tuning can be undertaken. The best method for determining the distribution of execution time among methods is to use a profiler. Sunª Javaª WorkShopª software provides an excellent profiler that offers detailed call counts and execution times for each method. System method call statistics can be tabulated as an option. Stream chaining and custom I/O class methods of performance tuning are discussed. An example program is provided that allows the progressive measurement of the progress of the tuning effort. Using the example program that is provided,, and utilizing the techniques described, substantial performance improvements of an order of magnitude can be achieved. Simple stream chaining provides approximately a 91% decrease in execution time from 28,198 milliseconds to 2,510 milliseconds, while a custom BufferedFileReader class cuts performance time by another 75%, over 97% total, to 630 milliseconds for a 250 kilobyte text file on The Sun™ Solaris™ 2.6 operating environment.

Java performance is currently a topic of great interest. Performance is usually hotly debated for any relatively new language or operating environment, so this is not surprising. However, Java's reliance upon the availability of sufficient network bandwidth for the downloading of classes shifts the relative benefits of some options for optimization. The reliance on the network penalizes optimization techniques that favor increasing code size in order to provide faster execution. The resulting optimized classes can take longer to download to the client. Of course, server-side Java is not as acutely affected by code size and developers can even consider native code compilers for that case. Based upon anecdotal evidence, most Java development today seems to be concentrated on client-side applets with the result that download times are an important criterion. Java optimization efforts, therefore, need to be well-researched and considered.

Because Java is a relatively new language, optimizing compiler features are less sophisticated than those available for C and C++, leaving room for more "hand-crafting". The "hand" optimization of key sections identified by profilers, such as the profiler available in Sun's Java WorkShop 2.0, can reap substantial benefits.

One of the more common problems in Java applications is inefficient I/O. A profile of Java applications and applets that handle significant volumes of data will show significant time spent in I/O routines, implying substantial gains can be had from I/O performance tuning. In fact, the I/O performance issues usually overshadow all other performance issues, making them the first area to concentrate on when tuning performance. Therefore, I/O efficiency should be a high priority for developers looking to optimally increase performance. Unfortunately, optimal reading and writing can be challenging in Java. Streamlining the use of I/O often results in greater performance gains than all other possible optimizations combined. It is not uncommon to see a speed improvement of at least an order of magnitude using efficient I/O techniques, as this paper and the example program will demonstrate.

This article focuses on the improvement gains possible through careful use of both the existing Java I/O classes and the introduction of a custom file reader, BufferedFileReader. BufferedFileReader is responsible for some of the performance increase of Java WorkShop version 2.0 over version 1.0. An example application is used to read three different file sizes, ranging from 100 kilobytes to 500 kilobytes and the results are compared for various optimizations.

Performance Tuning Through Stream Chaining
As a demonstration of I/O performance tuning, this article will describe the process of tuning a sample program created expressly for this paper: JavaIOTest. JavaIOTest tracks the execution times for several I/O schemes starting with a very basic DataInputStream method and culminating with the use of a custom-buffered, file-reader class, while demonstrating the performance improvements obtained by several program design changes during the tuning effort. The actual execution times are meant to show the relative improvements possible.* The actual execution times will vary widely among the systems used. Readers are cautioned that what is important is the relative improvement on the same system, test-to-test, and that comparisons across operating environments and systems are complex and the results can be specious.

Basic IO: DataInputStream
The I/O method used in this section is a DataInputStream chained to a FileInputStream as shown in Listing 1. This method of reading a file is very common since it is simple, but it is extremely slow. The reason for the poor performance is that the DataInputStream class does no buffering. The resulting reads are done one byte at a time. Several instances of this technique have been found in the JDKª software as well as several "real" Java programs, providing fertile ground for improvement through a tuning regime (see Listing 1).

The results of using the default, basic I/O scheme are as follows. The first section of the example program, JavaIOTest, showed run times of 28,198 milliseconds reading a 250 kilobyte file.*

An Improvement: BufferedInputStream
A simple improvement involves buffering the FileInputStream by interposing a BufferedInputStream in the stream chain. This buffers the data, with the default buffer size of 2048 bytes. Listing 2 illustrates the minor source code change required.

The resulting performance increase for the medium sized file (250 kilobytes) was 91%, from 28,198 milliseconds to 2,510 -- over an order of magnitude with just a simple change.*

The New JDK 1.1 Classes
The foregoing method has provided a substantial performance improvement but has a serious flaw: the readLine() method of DataInputStream does not properly handle Unicode characters. The problem is that the method assumes all characters are one byte in length while Unicode characters are two bytes in length. This method has been deprecated beginning in JDK 1.1. Since deprecated classes are discouraged, the FileReader and BufferedReader classes should be substituted for the classes.

Unfortunately, the scheme to provide for Unicode character localization consists of invoking a locale-dependent converter on the raw bytes to convert them to Java characters, causing an extra copy operation per character. This penalty is offset by other efficiencies in the code. The code change is shown in Listing 3.

The resulting performance increase for the medium file size was 57%, >from 2,510 to 1,092 milliseconds.*

Buffer Size Effects
The buffer size used in buffering schemes is important for performance. As a rule of thumb, bigger is better to a point. In order to examine the impact of the buffer size, a test run was made with a smaller buffer than the default of 8,192 bytes used in the BufferedReader class. Listing 4 shows the code segment using a reduced buffer size of 1,024 bytes.

Depending upon the file's size and platform used for testing, the larger buffer size provided performance improvements ranging from 3 to 13 percent. The use of a large buffer size will improve performance significantly and should be considered unless local memory is restricted.

Using simple stream-chaining techniques, the execution performance of an I/O bound Java program has been increased an average of 97 percent over using the simple DataInputStream class. This is a substantial improvement for a little extra design work and one that could mean the difference between shipping and re-designing an interactive application.

Tuning with Custom I/O Classes
To this point, tuning has focused on using the core classes distributed with the JDK. With each version of the JDK, more effort seems to be going into tuning critical sections for performance. The improvement in speed of the BufferedReader class over the BufferedInputStream class despite the additional copy per character hints at this. However, if the application needs to read large files, a custom class can be created to further tune performance. The BufferedReader.readLine() method creates an instance of StringBuffer to hold the characters in the line it reads. It then converts the StringBuffer to String, resulting in two more copies per character. The BufferedFileReader class utilizes a modified readLine() method that avoids the extra, double-copy in most cases. It also adds the convenience of creating the FileReader class for the caller. Listing 5 shows the changes required to use this class. The resulting performance increase for the medium file size was 32% overall to 630 milliseconds.*

The BufferedFileReader class is being used in Java WorkShop (package sun.jws.util). The documentation comment in Listing 6 describes the efficiencies added.

Without having to chain together several different classes, as with the standard JDK classes, the example provides a single, efficient class through which a file may be read. It is also more efficient (typically faster) than the fastest JDK classes. Specific optimizations include:
1. More efficiently coded readLine( ) method.
2. Adds open( ) method, so the class can be reused when several files are read in a loop. This avoids repeated allocation and deallocation of buffers.

This class (see Listing 6) contains a self-benchmarking test in its main() method that can be used to measure the exact speedup on a particular system.

Further Tuning
Although the example in Listing 5 is as much as 45 times faster than the example in Listing 1 (and actually comprises fewer lines of code), it is still far from the best that can be done. There are at least two more major optimizations that can be done if still higher performance is required and we are willing to do a little more work.

First, if we look at the first line of the while loop, we see that a new String object is being created for every line of the file being read:

while ((line = in.readLine()) != null) {

This means, for example, that for a 100,000 line file 100,000 String objects would be created. Creating a large number of objects incurs costs in three ways: 1. Time and memory to allocate the space for the objects
2. Time to initialize the objects
3. Time to garbage collect the objects

The problem here is that the I/O buffer is private; the user cannot access it directly. Therefore, BufferedFileReader must create a new String object in order to return the data to the user. Although this follows the conventional assertion that class structures should largely be private in order to control data access, the performance penalty is too high an insurance premium for this case.

To get around this problem, the user must manage the buffer directly without using the BufferedReader or BufferedFileReader convenience classes. This will enable the user to reuse buffers rather than creating a new object each time to hold the data.

Second, strings are inherently less efficient than arrays based upon char. This is because the user must call a method to access each character of a String, whereas the characters can be accessed directly in a char array. Hence, our code example can be made more efficient by avoiding Strings entirely, and using char arrays directly.

Listing 7 shows the code which implements the two optimizations above. It is substantially more lines of code than the previous examples, but tests show it performs as much as 3 times faster than the example in Listing 5.

Performance Tuning Results
The results of running the test program used for this article, JavaIOTest, on text files ranging from 100 kilobytes to 500 kilobytes in size are summarized in the tables found in Appendix One at The relative performance numbers are more important than the absolute numbers since the system was not isolated nor used exclusively for just the test processes. As the automobile industry states in its disclaimers, "your mileage may vary", readers are again cautioned that what is most important is the relative improvement on the same system and test-to-test. Comparisons across operating environments and systems are complex and the results can be specious.

*Full test results are available at: See Appendix One.

This article was provided by Engineering, Sun's Authoring and Development Tools Group.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

@ThingsExpo Stories
Internet of Things (IoT) will be a hybrid ecosystem of diverse devices and sensors collaborating with operational and enterprise systems to create the next big application. In their session at @ThingsExpo, Bramh Gupta, founder and CEO of, and Fred Yatzeck, principal architect leading product development at, discussed how choosing the right middleware and integration strategy from the get-go will enable IoT solution developers to adapt and grow with the industry, while at the same time reduce Time to Market (TTM) by using plug and play capabilities offered by a robust IoT ...
Today’s connected world is moving from devices towards things, what this means is that by using increasingly low cost sensors embedded in devices we can create many new use cases. These span across use cases in cities, vehicles, home, offices, factories, retail environments, worksites, health, logistics, and health. These use cases rely on ubiquitous connectivity and generate massive amounts of data at scale. These technologies enable new business opportunities, ways to optimize and automate, along with new ways to engage with users.
The buzz continues for cloud, data analytics and the Internet of Things (IoT) and their collective impact across all industries. But a new conversation is emerging - how do companies use industry disruption and technology enablers to lead in markets undergoing change, uncertainty and ambiguity? Organizations of all sizes need to evolve and transform, often under massive pressure, as industry lines blur and merge and traditional business models are assaulted and turned upside down. In this new data-driven world, marketplaces reign supreme while interoperability, APIs and applications deliver un...
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data shows "less than 10 percent of IoT developers are making enough to support a reasonably sized team....
“In the past year we've seen a lot of stabilization of WebRTC. You can now use it in production with a far greater degree of certainty. A lot of the real developments in the past year have been in things like the data channel, which will enable a whole new type of application," explained Peter Dunkley, Technical Director at Acision, in this interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
Through WebRTC, audio and video communications are being embedded more easily than ever into applications, helping carriers, enterprises and independent software vendors deliver greater functionality to their end users. With today’s business world increasingly focused on outcomes, users’ growing calls for ease of use, and businesses craving smarter, tighter integration, what’s the next step in delivering a richer, more immersive experience? That richer, more fully integrated experience comes about through a Communications Platform as a Service which allows for messaging, screen sharing, video...
SYS-CON Events announced today that Dyn, the worldwide leader in Internet Performance, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3-5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Dyn is a cloud-based Internet Performance company. Dyn helps companies monitor, control, and optimize online infrastructure for an exceptional end-user experience. Through a world-class network and unrivaled, objective intelligence into Internet conditions, Dyn ensures traffic gets delivered faster, safer, and more reliably than ever.
There are so many tools and techniques for data analytics that even for a data scientist the choices, possible systems, and even the types of data can be daunting. In his session at @ThingsExpo, Chris Harrold, Global CTO for Big Data Solutions for EMC Corporation, will show how to perform a simple, but meaningful analysis of social sentiment data using freely available tools that take only minutes to download and install. Participants will get the download information, scripts, and complete end-to-end walkthrough of the analysis from start to finish. Participants will also be given the pract...
The IoT market is on track to hit $7.1 trillion in 2020. The reality is that only a handful of companies are ready for this massive demand. There are a lot of barriers, paint points, traps, and hidden roadblocks. How can we deal with these issues and challenges? The paradigm has changed. Old-style ad-hoc trial-and-error ways will certainly lead you to the dead end. What is mandatory is an overarching and adaptive approach to effectively handle the rapid changes and exponential growth.
Mobile messaging has been a popular communication channel for more than 20 years. Finnish engineer Matti Makkonen invented the idea for SMS (Short Message Service) in 1984, making his vision a reality on December 3, 1992 by sending the first message ("Happy Christmas") from a PC to a cell phone. Since then, the technology has evolved immensely, from both a technology standpoint, and in our everyday uses for it. Originally used for person-to-person (P2P) communication, i.e., Sally sends a text message to Betty – mobile messaging now offers tremendous value to businesses for customer and empl...
Can call centers hang up the phones for good? Intuitive Solutions did. WebRTC enabled this contact center provider to eliminate antiquated telephony and desktop phone infrastructure with a pure web-based solution, allowing them to expand beyond brick-and-mortar confines to a home-based agent model. It also ensured scalability and better service for customers, including MUY! Companies, one of the country's largest franchise restaurant companies with 232 Pizza Hut locations. This is one example of WebRTC adoption today, but the potential is limitless when powered by IoT.
You have your devices and your data, but what about the rest of your Internet of Things story? Two popular classes of technologies that nicely handle the Big Data analytics for Internet of Things are Apache Hadoop and NoSQL. Hadoop is designed for parallelizing analytical work across many servers and is ideal for the massive data volumes you create with IoT devices. NoSQL databases such as Apache HBase are ideal for storing and retrieving IoT data as “time series data.”
Clearly the way forward is to move to cloud be it bare metal, VMs or containers. One aspect of the current public clouds that is slowing this cloud migration is cloud lock-in. Every cloud vendor is trying to make it very difficult to move out once a customer has chosen their cloud. In his session at 17th Cloud Expo, Naveen Nimmu, CEO of Clouber, Inc., will advocate that making the inter-cloud migration as simple as changing airlines would help the entire industry to quickly adopt the cloud without worrying about any lock-in fears. In fact by having standard APIs for IaaS would help PaaS expl...
NHK, Japan Broadcasting, will feature the upcoming @ThingsExpo Silicon Valley in a special 'Internet of Things' and smart technology documentary that will be filmed on the expo floor between November 3 to 5, 2015, in Santa Clara. NHK is the sole public TV network in Japan equivalent to the BBC in the UK and the largest in Asia with many award-winning science and technology programs. Japanese TV is producing a documentary about IoT and Smart technology and will be covering @ThingsExpo Silicon Valley. The program, to be aired during the peak viewership season of the year, will have a major impac...
SYS-CON Events announced today that ProfitBricks, the provider of painless cloud infrastructure, will exhibit at SYS-CON's 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. ProfitBricks is the IaaS provider that offers a painless cloud experience for all IT users, with no learning curve. ProfitBricks boasts flexible cloud servers and networking, an integrated Data Center Designer tool for visual control over the cloud and the best price/performance value available. ProfitBricks was named one of the coolest Clo...
Organizations already struggle with the simple collection of data resulting from the proliferation of IoT, lacking the right infrastructure to manage it. They can't only rely on the cloud to collect and utilize this data because many applications still require dedicated infrastructure for security, redundancy, performance, etc. In his session at 17th Cloud Expo, Emil Sayegh, CEO of Codero Hosting, will discuss how in order to resolve the inherent issues, companies need to combine dedicated and cloud solutions through hybrid hosting – a sustainable solution for the data required to manage I...
Apps and devices shouldn't stop working when there's limited or no network connectivity. Learn how to bring data stored in a cloud database to the edge of the network (and back again) whenever an Internet connection is available. In his session at 17th Cloud Expo, Bradley Holt, Developer Advocate at IBM Cloud Data Services, will demonstrate techniques for replicating cloud databases with devices in order to build offline-first mobile or Internet of Things (IoT) apps that can provide a better, faster user experience, both offline and online. The focus of this talk will be on IBM Cloudant, Apa...
WebRTC is about the data channel as much as about video and audio conferencing. However, basically all commercial WebRTC applications have been built with a focus on audio and video. The handling of “data” has been limited to text chat and file download – all other data sharing seems to end with screensharing. What is holding back a more intensive use of peer-to-peer data? In her session at @ThingsExpo, Dr Silvia Pfeiffer, WebRTC Applications Team Lead at National ICT Australia, will look at different existing uses of peer-to-peer data sharing and how it can become useful in a live session to...
As a company adopts a DevOps approach to software development, what are key things that both the Dev and Ops side of the business must keep in mind to ensure effective continuous delivery? In his session at DevOps Summit, Mark Hydar, Head of DevOps, Ericsson TV Platforms, will share best practices and provide helpful tips for Ops teams to adopt an open line of communication with the development side of the house to ensure success between the two sides.
SYS-CON Events announced today that IBM Cloud Data Services has been named “Bronze Sponsor” of SYS-CON's 17th Cloud Expo, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. IBM Cloud Data Services offers a portfolio of integrated, best-of-breed cloud data services for developers focused on mobile computing and analytics use cases.