Welcome!

Java IoT Authors: AppDynamics Blog, Liz McMillan, Elizabeth White, Pat Romanski, John Esposito

Related Topics: Java IoT

Java IoT: Article

Java Performance I/O Tuning

Java Performance I/O Tuning

Many Java programs that utilize I/O are excellent candidates for performance tuning. One of the more common problems in Java applications is inefficient I/O. A profile of Java applications and applets that handle significant volumes of data will show significant time spent in I/O routines, implying substantial gains can be had from I/O performance tuning. In fact, the I/O performance issues usually overshadow all other performance issues, making them the first area to concentrate on when tuning performance. Therefore, I/O efficiency should be a high priority for developers looking to optimally increase performance. Unfortunately, optimal reading and writing can be challenging in Java.

Once an application's reliance upon I/O is established and I/O is determined to account for a substantial slice of the applications execution time, performance tuning can be undertaken. The best method for determining the distribution of execution time among methods is to use a profiler. Sunª Javaª WorkShopª software provides an excellent profiler that offers detailed call counts and execution times for each method. System method call statistics can be tabulated as an option. Stream chaining and custom I/O class methods of performance tuning are discussed. An example program is provided that allows the progressive measurement of the progress of the tuning effort. Using the example program that is provided, JavaIOTest.java, and utilizing the techniques described, substantial performance improvements of an order of magnitude can be achieved. Simple stream chaining provides approximately a 91% decrease in execution time from 28,198 milliseconds to 2,510 milliseconds, while a custom BufferedFileReader class cuts performance time by another 75%, over 97% total, to 630 milliseconds for a 250 kilobyte text file on The Sun™ Solaris™ 2.6 operating environment.

Introduction
Java performance is currently a topic of great interest. Performance is usually hotly debated for any relatively new language or operating environment, so this is not surprising. However, Java's reliance upon the availability of sufficient network bandwidth for the downloading of classes shifts the relative benefits of some options for optimization. The reliance on the network penalizes optimization techniques that favor increasing code size in order to provide faster execution. The resulting optimized classes can take longer to download to the client. Of course, server-side Java is not as acutely affected by code size and developers can even consider native code compilers for that case. Based upon anecdotal evidence, most Java development today seems to be concentrated on client-side applets with the result that download times are an important criterion. Java optimization efforts, therefore, need to be well-researched and considered.

Because Java is a relatively new language, optimizing compiler features are less sophisticated than those available for C and C++, leaving room for more "hand-crafting". The "hand" optimization of key sections identified by profilers, such as the profiler available in Sun's Java WorkShop 2.0, can reap substantial benefits.

One of the more common problems in Java applications is inefficient I/O. A profile of Java applications and applets that handle significant volumes of data will show significant time spent in I/O routines, implying substantial gains can be had from I/O performance tuning. In fact, the I/O performance issues usually overshadow all other performance issues, making them the first area to concentrate on when tuning performance. Therefore, I/O efficiency should be a high priority for developers looking to optimally increase performance. Unfortunately, optimal reading and writing can be challenging in Java. Streamlining the use of I/O often results in greater performance gains than all other possible optimizations combined. It is not uncommon to see a speed improvement of at least an order of magnitude using efficient I/O techniques, as this paper and the example program will demonstrate.

This article focuses on the improvement gains possible through careful use of both the existing Java I/O classes and the introduction of a custom file reader, BufferedFileReader. BufferedFileReader is responsible for some of the performance increase of Java WorkShop version 2.0 over version 1.0. An example application is used to read three different file sizes, ranging from 100 kilobytes to 500 kilobytes and the results are compared for various optimizations.

Performance Tuning Through Stream Chaining
As a demonstration of I/O performance tuning, this article will describe the process of tuning a sample program created expressly for this paper: JavaIOTest. JavaIOTest tracks the execution times for several I/O schemes starting with a very basic DataInputStream method and culminating with the use of a custom-buffered, file-reader class, while demonstrating the performance improvements obtained by several program design changes during the tuning effort. The actual execution times are meant to show the relative improvements possible.* The actual execution times will vary widely among the systems used. Readers are cautioned that what is important is the relative improvement on the same system, test-to-test, and that comparisons across operating environments and systems are complex and the results can be specious.

Basic IO: DataInputStream
The I/O method used in this section is a DataInputStream chained to a FileInputStream as shown in Listing 1. This method of reading a file is very common since it is simple, but it is extremely slow. The reason for the poor performance is that the DataInputStream class does no buffering. The resulting reads are done one byte at a time. Several instances of this technique have been found in the JDKª software as well as several "real" Java programs, providing fertile ground for improvement through a tuning regime (see Listing 1).

The results of using the default, basic I/O scheme are as follows. The first section of the example program, JavaIOTest, showed run times of 28,198 milliseconds reading a 250 kilobyte file.*

An Improvement: BufferedInputStream
A simple improvement involves buffering the FileInputStream by interposing a BufferedInputStream in the stream chain. This buffers the data, with the default buffer size of 2048 bytes. Listing 2 illustrates the minor source code change required.

The resulting performance increase for the medium sized file (250 kilobytes) was 91%, from 28,198 milliseconds to 2,510 -- over an order of magnitude with just a simple change.*

The New JDK 1.1 Classes
The foregoing method has provided a substantial performance improvement but has a serious flaw: the readLine() method of DataInputStream does not properly handle Unicode characters. The problem is that the method assumes all characters are one byte in length while Unicode characters are two bytes in length. This method has been deprecated beginning in JDK 1.1. Since deprecated classes are discouraged, the FileReader and BufferedReader classes should be substituted for the classes.

Unfortunately, the scheme to provide for Unicode character localization consists of invoking a locale-dependent converter on the raw bytes to convert them to Java characters, causing an extra copy operation per character. This penalty is offset by other efficiencies in the code. The code change is shown in Listing 3.

The resulting performance increase for the medium file size was 57%, >from 2,510 to 1,092 milliseconds.*

Buffer Size Effects
The buffer size used in buffering schemes is important for performance. As a rule of thumb, bigger is better to a point. In order to examine the impact of the buffer size, a test run was made with a smaller buffer than the default of 8,192 bytes used in the BufferedReader class. Listing 4 shows the code segment using a reduced buffer size of 1,024 bytes.

Depending upon the file's size and platform used for testing, the larger buffer size provided performance improvements ranging from 3 to 13 percent. The use of a large buffer size will improve performance significantly and should be considered unless local memory is restricted.

Summary
Using simple stream-chaining techniques, the execution performance of an I/O bound Java program has been increased an average of 97 percent over using the simple DataInputStream class. This is a substantial improvement for a little extra design work and one that could mean the difference between shipping and re-designing an interactive application.

Tuning with Custom I/O Classes
To this point, tuning has focused on using the core classes distributed with the JDK. With each version of the JDK, more effort seems to be going into tuning critical sections for performance. The improvement in speed of the BufferedReader class over the BufferedInputStream class despite the additional copy per character hints at this. However, if the application needs to read large files, a custom class can be created to further tune performance. The BufferedReader.readLine() method creates an instance of StringBuffer to hold the characters in the line it reads. It then converts the StringBuffer to String, resulting in two more copies per character. The BufferedFileReader class utilizes a modified readLine() method that avoids the extra, double-copy in most cases. It also adds the convenience of creating the FileReader class for the caller. Listing 5 shows the changes required to use this class. The resulting performance increase for the medium file size was 32% overall to 630 milliseconds.*

The BufferedFileReader class is being used in Java WorkShop (package sun.jws.util). The documentation comment in Listing 6 describes the efficiencies added.

Without having to chain together several different classes, as with the standard JDK classes, the example provides a single, efficient class through which a file may be read. It is also more efficient (typically faster) than the fastest JDK classes. Specific optimizations include:
1. More efficiently coded readLine( ) method.
2. Adds open( ) method, so the class can be reused when several files are read in a loop. This avoids repeated allocation and deallocation of buffers.

This class (see Listing 6) contains a self-benchmarking test in its main() method that can be used to measure the exact speedup on a particular system.

Further Tuning
Although the example in Listing 5 is as much as 45 times faster than the example in Listing 1 (and actually comprises fewer lines of code), it is still far from the best that can be done. There are at least two more major optimizations that can be done if still higher performance is required and we are willing to do a little more work.

First, if we look at the first line of the while loop, we see that a new String object is being created for every line of the file being read:

while ((line = in.readLine()) != null) {

This means, for example, that for a 100,000 line file 100,000 String objects would be created. Creating a large number of objects incurs costs in three ways: 1. Time and memory to allocate the space for the objects
2. Time to initialize the objects
3. Time to garbage collect the objects

The problem here is that the I/O buffer is private; the user cannot access it directly. Therefore, BufferedFileReader must create a new String object in order to return the data to the user. Although this follows the conventional assertion that class structures should largely be private in order to control data access, the performance penalty is too high an insurance premium for this case.

To get around this problem, the user must manage the buffer directly without using the BufferedReader or BufferedFileReader convenience classes. This will enable the user to reuse buffers rather than creating a new object each time to hold the data.

Second, strings are inherently less efficient than arrays based upon char. This is because the user must call a method to access each character of a String, whereas the characters can be accessed directly in a char array. Hence, our code example can be made more efficient by avoiding Strings entirely, and using char arrays directly.

Listing 7 shows the code which implements the two optimizations above. It is substantially more lines of code than the previous examples, but tests show it performs as much as 3 times faster than the example in Listing 5.

Performance Tuning Results
The results of running the test program used for this article, JavaIOTest, on text files ranging from 100 kilobytes to 500 kilobytes in size are summarized in the tables found in Appendix One at http://www.sun.com/workshop/java/wp-javaio. The relative performance numbers are more important than the absolute numbers since the system was not isolated nor used exclusively for just the test processes. As the automobile industry states in its disclaimers, "your mileage may vary", readers are again cautioned that what is most important is the relative improvement on the same system and test-to-test. Comparisons across operating environments and systems are complex and the results can be specious.

*Full test results are available at: http://www.sun.com/workshop/java/wp-javaio. See Appendix One.

This article was provided by Engineering, Sun's Authoring and Development Tools Group.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
Manufacturers are embracing the Industrial Internet the same way consumers are leveraging Fitbits – to improve overall health and wellness. Both can provide consistent measurement, visibility, and suggest performance improvements customized to help reach goals. Fitbit users can view real-time data and make adjustments to increase their activity. In his session at @ThingsExpo, Mark Bernardo Professional Services Leader, Americas, at GE Digital, will discuss how leveraging the Industrial Interne...
The IETF draft standard for M2M certificates is a security solution specifically designed for the demanding needs of IoT/M2M applications. In his session at @ThingsExpo, Brian Romansky, VP of Strategic Technology at TrustPoint Innovation, will explain how M2M certificates can efficiently enable confidentiality, integrity, and authenticity on highly constrained devices.
There is an ever-growing explosion of new devices that are connected to the Internet using “cloud” solutions. This rapid growth is creating a massive new demand for efficient access to data. And it’s not just about connecting to that data anymore. This new demand is bringing new issues and challenges and it is important for companies to scale for the coming growth. And with that scaling comes the need for greater security, gathering and data analysis, storage, connectivity and, of course, the...
Increasing IoT connectivity is forcing enterprises to find elegant solutions to organize and visualize all incoming data from these connected devices with re-configurable dashboard widgets to effectively allow rapid decision-making for everything from immediate actions in tactical situations to strategic analysis and reporting. In his session at 18th Cloud Expo, Shikhir Singh, Senior Developer Relations Manager at Sencha, will discuss how to create HTML5 dashboards that interact with IoT devic...
The increasing popularity of the Internet of Things necessitates that our physical and cognitive relationship with wearable technology will change rapidly in the near future. This advent means logging has become a thing of the past. Before, it was on us to track our own data, but now that data is automatically available. What does this mean for mHealth and the "connected" body? In her session at @ThingsExpo, Lisa Calkins, CEO and co-founder of Amadeus Consulting, will discuss the impact of wea...
Whether your IoT service is connecting cars, homes, appliances, wearable, cameras or other devices, one question hangs in the balance – how do you actually make money from this service? The ability to turn your IoT service into profit requires the ability to create a monetization strategy that is flexible, scalable and working for you in real-time. It must be a transparent, smoothly implemented strategy that all stakeholders – from customers to the board – will be able to understand and comprehe...
SYS-CON Events announced today that Ericsson has been named “Gold Sponsor” of SYS-CON's @ThingsExpo, which will take place on June 7-9, 2016, at the Javits Center in New York, New York. Ericsson is a world leader in the rapidly changing environment of communications technology – providing equipment, software and services to enable transformation through mobility. Some 40 percent of global mobile traffic runs through networks we have supplied. More than 1 billion subscribers around the world re...
You deployed your app with the Bluemix PaaS and it's gaining some serious traction, so it's time to make some tweaks. Did you design your application in a way that it can scale in the cloud? Were you even thinking about the cloud when you built the app? If not, chances are your app is going to break. Check out this webcast to learn various techniques for designing applications that will scale successfully in Bluemix, for the confidence you need to take your apps to the next level and beyond.
SYS-CON Events announced today that Peak 10, Inc., a national IT infrastructure and cloud services provider, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Peak 10 provides reliable, tailored data center and network services, cloud and managed services. Its solutions are designed to scale and adapt to customers’ changing business needs, enabling them to lower costs, improve performance and focus inter...
Artificial Intelligence has the potential to massively disrupt IoT. In his session at 18th Cloud Expo, AJ Abdallat, CEO of Beyond AI, will discuss what the five main drivers are in Artificial Intelligence that could shape the future of the Internet of Things. AJ Abdallat is CEO of Beyond AI. He has over 20 years of management experience in the fields of artificial intelligence, sensors, instruments, devices and software for telecommunications, life sciences, environmental monitoring, process...
We’ve worked with dozens of early adopters across numerous industries and will debunk common misperceptions, which starts with understanding that many of the connected products we’ll use over the next 5 years are already products, they’re just not yet connected. With an IoT product, time-in-market provides much more essential feedback than ever before. Innovation comes from what you do with the data that the connected product provides in order to enhance the customer experience and optimize busi...
The IoTs will challenge the status quo of how IT and development organizations operate. Or will it? Certainly the fog layer of IoT requires special insights about data ontology, security and transactional integrity. But the developmental challenges are the same: People, Process and Platform. In his session at @ThingsExpo, Craig Sproule, CEO of Metavine, will demonstrate how to move beyond today's coding paradigm and share the must-have mindsets for removing complexity from the development proc...
So, you bought into the current machine learning craze and went on to collect millions/billions of records from this promising new data source. Now, what do you do with them? Too often, the abundance of data quickly turns into an abundance of problems. How do you extract that "magic essence" from your data without falling into the common pitfalls? In her session at @ThingsExpo, Natalia Ponomareva, Software Engineer at Google, will provide tips on how to be successful in large scale machine lear...
In his session at @ThingsExpo, Chris Klein, CEO and Co-founder of Rachio, will discuss next generation communities that are using IoT to create more sustainable, intelligent communities. One example is Sterling Ranch, a 10,000 home development that – with the help of Siemens – will integrate IoT technology into the community to provide residents with energy and water savings as well as intelligent security. Everything from stop lights to sprinkler systems to building infrastructures will run ef...
You think you know what’s in your data. But do you? Most organizations are now aware of the business intelligence represented by their data. Data science stands to take this to a level you never thought of – literally. The techniques of data science, when used with the capabilities of Big Data technologies, can make connections you had not yet imagined, helping you discover new insights and ask new questions of your data. In his session at @ThingsExpo, Sarbjit Sarkaria, data science team lead ...
SYS-CON Events announced today that Fusion, a leading provider of cloud services, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Fusion, a leading provider of integrated cloud solutions to small, medium and large businesses, is the industry's single source for the cloud. Fusion's advanced, proprietary cloud service platform enables the integration of leading edge solutions in the cloud, including cloud...
Digital payments using wearable devices such as smart watches, fitness trackers, and payment wristbands are an increasing area of focus for industry participants, and consumer acceptance from early trials and deployments has encouraged some of the biggest names in technology and banking to continue their push to drive growth in this nascent market. Wearable payment systems may utilize near field communication (NFC), radio frequency identification (RFID), or quick response (QR) codes and barcodes...
SYS-CON Events announced today that DatacenterDynamics has been named “Media Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY. DatacenterDynamics is a brand of DCD Group, a global B2B media and publishing company that develops products to help senior professionals in the world's most ICT dependent organizations make risk-based infrastructure and capacity decisions.
The IoT has the potential to create a renaissance of manufacturing in the US and elsewhere. In his session at 18th Cloud Expo, Florent Solt, CTO and chief architect of Netvibes, will discuss how the expected exponential increase in the amount of data that will be processed, transported, stored, and accessed means there will be a huge demand for smart technologies to deliver it. Florent Solt is the CTO and chief architect of Netvibes. Prior to joining Netvibes in 2007, he co-founded Rift Technol...
SYS-CON Events announced today that Stratoscale, the software company developing the next generation data center operating system, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Stratoscale is revolutionizing the data center with a zero-to-cloud-in-minutes solution. With Stratoscale’s hardware-agnostic, Software Defined Data Center (SDDC) solution to store everything, run anything and scale everywhere...