Click here to close now.




















Welcome!

Java IoT Authors: Liz McMillan, Elizabeth White, Trevor Parsons, XebiaLabs Blog, Samuel Scott

Related Topics: Java IoT

Java IoT: Article

Java Performance I/O Tuning

Java Performance I/O Tuning

Many Java programs that utilize I/O are excellent candidates for performance tuning. One of the more common problems in Java applications is inefficient I/O. A profile of Java applications and applets that handle significant volumes of data will show significant time spent in I/O routines, implying substantial gains can be had from I/O performance tuning. In fact, the I/O performance issues usually overshadow all other performance issues, making them the first area to concentrate on when tuning performance. Therefore, I/O efficiency should be a high priority for developers looking to optimally increase performance. Unfortunately, optimal reading and writing can be challenging in Java.

Once an application's reliance upon I/O is established and I/O is determined to account for a substantial slice of the applications execution time, performance tuning can be undertaken. The best method for determining the distribution of execution time among methods is to use a profiler. Sunª Javaª WorkShopª software provides an excellent profiler that offers detailed call counts and execution times for each method. System method call statistics can be tabulated as an option. Stream chaining and custom I/O class methods of performance tuning are discussed. An example program is provided that allows the progressive measurement of the progress of the tuning effort. Using the example program that is provided, JavaIOTest.java, and utilizing the techniques described, substantial performance improvements of an order of magnitude can be achieved. Simple stream chaining provides approximately a 91% decrease in execution time from 28,198 milliseconds to 2,510 milliseconds, while a custom BufferedFileReader class cuts performance time by another 75%, over 97% total, to 630 milliseconds for a 250 kilobyte text file on The Sun™ Solaris™ 2.6 operating environment.

Introduction
Java performance is currently a topic of great interest. Performance is usually hotly debated for any relatively new language or operating environment, so this is not surprising. However, Java's reliance upon the availability of sufficient network bandwidth for the downloading of classes shifts the relative benefits of some options for optimization. The reliance on the network penalizes optimization techniques that favor increasing code size in order to provide faster execution. The resulting optimized classes can take longer to download to the client. Of course, server-side Java is not as acutely affected by code size and developers can even consider native code compilers for that case. Based upon anecdotal evidence, most Java development today seems to be concentrated on client-side applets with the result that download times are an important criterion. Java optimization efforts, therefore, need to be well-researched and considered.

Because Java is a relatively new language, optimizing compiler features are less sophisticated than those available for C and C++, leaving room for more "hand-crafting". The "hand" optimization of key sections identified by profilers, such as the profiler available in Sun's Java WorkShop 2.0, can reap substantial benefits.

One of the more common problems in Java applications is inefficient I/O. A profile of Java applications and applets that handle significant volumes of data will show significant time spent in I/O routines, implying substantial gains can be had from I/O performance tuning. In fact, the I/O performance issues usually overshadow all other performance issues, making them the first area to concentrate on when tuning performance. Therefore, I/O efficiency should be a high priority for developers looking to optimally increase performance. Unfortunately, optimal reading and writing can be challenging in Java. Streamlining the use of I/O often results in greater performance gains than all other possible optimizations combined. It is not uncommon to see a speed improvement of at least an order of magnitude using efficient I/O techniques, as this paper and the example program will demonstrate.

This article focuses on the improvement gains possible through careful use of both the existing Java I/O classes and the introduction of a custom file reader, BufferedFileReader. BufferedFileReader is responsible for some of the performance increase of Java WorkShop version 2.0 over version 1.0. An example application is used to read three different file sizes, ranging from 100 kilobytes to 500 kilobytes and the results are compared for various optimizations.

Performance Tuning Through Stream Chaining
As a demonstration of I/O performance tuning, this article will describe the process of tuning a sample program created expressly for this paper: JavaIOTest. JavaIOTest tracks the execution times for several I/O schemes starting with a very basic DataInputStream method and culminating with the use of a custom-buffered, file-reader class, while demonstrating the performance improvements obtained by several program design changes during the tuning effort. The actual execution times are meant to show the relative improvements possible.* The actual execution times will vary widely among the systems used. Readers are cautioned that what is important is the relative improvement on the same system, test-to-test, and that comparisons across operating environments and systems are complex and the results can be specious.

Basic IO: DataInputStream
The I/O method used in this section is a DataInputStream chained to a FileInputStream as shown in Listing 1. This method of reading a file is very common since it is simple, but it is extremely slow. The reason for the poor performance is that the DataInputStream class does no buffering. The resulting reads are done one byte at a time. Several instances of this technique have been found in the JDKª software as well as several "real" Java programs, providing fertile ground for improvement through a tuning regime (see Listing 1).

The results of using the default, basic I/O scheme are as follows. The first section of the example program, JavaIOTest, showed run times of 28,198 milliseconds reading a 250 kilobyte file.*

An Improvement: BufferedInputStream
A simple improvement involves buffering the FileInputStream by interposing a BufferedInputStream in the stream chain. This buffers the data, with the default buffer size of 2048 bytes. Listing 2 illustrates the minor source code change required.

The resulting performance increase for the medium sized file (250 kilobytes) was 91%, from 28,198 milliseconds to 2,510 -- over an order of magnitude with just a simple change.*

The New JDK 1.1 Classes
The foregoing method has provided a substantial performance improvement but has a serious flaw: the readLine() method of DataInputStream does not properly handle Unicode characters. The problem is that the method assumes all characters are one byte in length while Unicode characters are two bytes in length. This method has been deprecated beginning in JDK 1.1. Since deprecated classes are discouraged, the FileReader and BufferedReader classes should be substituted for the classes.

Unfortunately, the scheme to provide for Unicode character localization consists of invoking a locale-dependent converter on the raw bytes to convert them to Java characters, causing an extra copy operation per character. This penalty is offset by other efficiencies in the code. The code change is shown in Listing 3.

The resulting performance increase for the medium file size was 57%, >from 2,510 to 1,092 milliseconds.*

Buffer Size Effects
The buffer size used in buffering schemes is important for performance. As a rule of thumb, bigger is better to a point. In order to examine the impact of the buffer size, a test run was made with a smaller buffer than the default of 8,192 bytes used in the BufferedReader class. Listing 4 shows the code segment using a reduced buffer size of 1,024 bytes.

Depending upon the file's size and platform used for testing, the larger buffer size provided performance improvements ranging from 3 to 13 percent. The use of a large buffer size will improve performance significantly and should be considered unless local memory is restricted.

Summary
Using simple stream-chaining techniques, the execution performance of an I/O bound Java program has been increased an average of 97 percent over using the simple DataInputStream class. This is a substantial improvement for a little extra design work and one that could mean the difference between shipping and re-designing an interactive application.

Tuning with Custom I/O Classes
To this point, tuning has focused on using the core classes distributed with the JDK. With each version of the JDK, more effort seems to be going into tuning critical sections for performance. The improvement in speed of the BufferedReader class over the BufferedInputStream class despite the additional copy per character hints at this. However, if the application needs to read large files, a custom class can be created to further tune performance. The BufferedReader.readLine() method creates an instance of StringBuffer to hold the characters in the line it reads. It then converts the StringBuffer to String, resulting in two more copies per character. The BufferedFileReader class utilizes a modified readLine() method that avoids the extra, double-copy in most cases. It also adds the convenience of creating the FileReader class for the caller. Listing 5 shows the changes required to use this class. The resulting performance increase for the medium file size was 32% overall to 630 milliseconds.*

The BufferedFileReader class is being used in Java WorkShop (package sun.jws.util). The documentation comment in Listing 6 describes the efficiencies added.

Without having to chain together several different classes, as with the standard JDK classes, the example provides a single, efficient class through which a file may be read. It is also more efficient (typically faster) than the fastest JDK classes. Specific optimizations include:
1. More efficiently coded readLine( ) method.
2. Adds open( ) method, so the class can be reused when several files are read in a loop. This avoids repeated allocation and deallocation of buffers.

This class (see Listing 6) contains a self-benchmarking test in its main() method that can be used to measure the exact speedup on a particular system.

Further Tuning
Although the example in Listing 5 is as much as 45 times faster than the example in Listing 1 (and actually comprises fewer lines of code), it is still far from the best that can be done. There are at least two more major optimizations that can be done if still higher performance is required and we are willing to do a little more work.

First, if we look at the first line of the while loop, we see that a new String object is being created for every line of the file being read:

while ((line = in.readLine()) != null) {

This means, for example, that for a 100,000 line file 100,000 String objects would be created. Creating a large number of objects incurs costs in three ways: 1. Time and memory to allocate the space for the objects
2. Time to initialize the objects
3. Time to garbage collect the objects

The problem here is that the I/O buffer is private; the user cannot access it directly. Therefore, BufferedFileReader must create a new String object in order to return the data to the user. Although this follows the conventional assertion that class structures should largely be private in order to control data access, the performance penalty is too high an insurance premium for this case.

To get around this problem, the user must manage the buffer directly without using the BufferedReader or BufferedFileReader convenience classes. This will enable the user to reuse buffers rather than creating a new object each time to hold the data.

Second, strings are inherently less efficient than arrays based upon char. This is because the user must call a method to access each character of a String, whereas the characters can be accessed directly in a char array. Hence, our code example can be made more efficient by avoiding Strings entirely, and using char arrays directly.

Listing 7 shows the code which implements the two optimizations above. It is substantially more lines of code than the previous examples, but tests show it performs as much as 3 times faster than the example in Listing 5.

Performance Tuning Results
The results of running the test program used for this article, JavaIOTest, on text files ranging from 100 kilobytes to 500 kilobytes in size are summarized in the tables found in Appendix One at http://www.sun.com/workshop/java/wp-javaio. The relative performance numbers are more important than the absolute numbers since the system was not isolated nor used exclusively for just the test processes. As the automobile industry states in its disclaimers, "your mileage may vary", readers are again cautioned that what is most important is the relative improvement on the same system and test-to-test. Comparisons across operating environments and systems are complex and the results can be specious.

*Full test results are available at: http://www.sun.com/workshop/java/wp-javaio. See Appendix One.

This article was provided by Engineering, Sun's Authoring and Development Tools Group.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
As more intelligent IoT applications shift into gear, they’re merging into the ever-increasing traffic flow of the Internet. It won’t be long before we experience bottlenecks, as IoT traffic peaks during rush hours. Organizations that are unprepared will find themselves by the side of the road unable to cross back into the fast lane. As billions of new devices begin to communicate and exchange data – will your infrastructure be scalable enough to handle this new interconnected world?
Through WebRTC, audio and video communications are being embedded more easily than ever into applications, helping carriers, enterprises and independent software vendors deliver greater functionality to their end users. With today’s business world increasingly focused on outcomes, users’ growing calls for ease of use, and businesses craving smarter, tighter integration, what’s the next step in delivering a richer, more immersive experience? That richer, more fully integrated experience comes about through a Communications Platform as a Service which allows for messaging, screen sharing, video...
SYS-CON Events announced today that Pythian, a global IT services company specializing in helping companies leverage disruptive technologies to optimize revenue-generating systems, has been named “Bronze Sponsor” of SYS-CON's 17th Cloud Expo, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Founded in 1997, Pythian is a global IT services company that helps companies compete by adopting disruptive technologies such as cloud, Big Data, advanced analytics, and DevOps to advance innovation and increase agility. Specializing in designing, imple...
Contrary to mainstream media attention, the multiple possibilities of how consumer IoT will transform our everyday lives aren’t the only angle of this headline-gaining trend. There’s a huge opportunity for “industrial IoT” and “Smart Cities” to impact the world in the same capacity – especially during critical situations. For example, a community water dam that needs to release water can leverage embedded critical communications logic to alert the appropriate individuals, on the right device, as soon as they are needed to take action.
In his session at @ThingsExpo, Lee Williams, a producer of the first smartphones and tablets, will talk about how he is now applying his experience in mobile technology to the design and development of the next generation of Environmental and Sustainability Services at ETwater. He will explain how M2M controllers work through wirelessly connected remote controls; and specifically delve into a retrofit option that reverse-engineers control codes of existing conventional controller systems so they don't have to be replaced and are instantly converted to become smart, connected devices.
SYS-CON Events announced today that IceWarp will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. IceWarp, the leader of cloud and on-premise messaging, delivers secured email, chat, documents, conferencing and collaboration to today's mobile workforce, all in one unified interface
WebRTC has had a real tough three or four years, and so have those working with it. Only a few short years ago, the development world were excited about WebRTC and proclaiming how awesome it was. You might have played with the technology a couple of years ago, only to find the extra infrastructure requirements were painful to implement and poorly documented. This probably left a bitter taste in your mouth, especially when things went wrong.
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome,” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
While many app developers are comfortable building apps for the smartphone, there is a whole new world out there. In his session at @ThingsExpo, Narayan Sainaney, Co-founder and CTO of Mojio, will discuss how the business case for connected car apps is growing and, with open platform companies having already done the heavy lifting, there really is no barrier to entry.
SYS-CON Events announced today that Micron Technology, Inc., a global leader in advanced semiconductor systems, will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Micron’s broad portfolio of high-performance memory technologies – including DRAM, NAND and NOR Flash – is the basis for solid state drives, modules, multichip packages and other system solutions. Backed by more than 35 years of technology leadership, Micron's memory solutions enable the world's most innovative computing, consumer,...
SYS-CON Events announced today that HPM Networks will exhibit at the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. For 20 years, HPM Networks has been integrating technology solutions that solve complex business challenges. HPM Networks has designed solutions for both SMB and enterprise customers throughout the San Francisco Bay Area.
Consumer IoT applications provide data about the user that just doesn’t exist in traditional PC or mobile web applications. This rich data, or “context,” enables the highly personalized consumer experiences that characterize many consumer IoT apps. This same data is also providing brands with unprecedented insight into how their connected products are being used, while, at the same time, powering highly targeted engagement and marketing opportunities. In his session at @ThingsExpo, Nathan Treloar, President and COO of Bebaio, will explore examples of brands transforming their businesses by t...
With the proliferation of connected devices underpinning new Internet of Things systems, Brandon Schulz, Director of Luxoft IoT – Retail, will be looking at the transformation of the retail customer experience in brick and mortar stores in his session at @ThingsExpo. Questions he will address include: Will beacons drop to the wayside like QR codes, or be a proximity-based profit driver? How will the customer experience change in stores of all types when everything can be instrumented and analyzed? As an area of investment, how might a retail company move towards an innovation methodolo...
The Internet of Things (IoT) is about the digitization of physical assets including sensors, devices, machines, gateways, and the network. It creates possibilities for significant value creation and new revenue generating business models via data democratization and ubiquitous analytics across IoT networks. The explosion of data in all forms in IoT requires a more robust and broader lens in order to enable smarter timely actions and better outcomes. Business operations become the key driver of IoT applications and projects. Business operations, IT, and data scientists need advanced analytics t...
As more and more data is generated from a variety of connected devices, the need to get insights from this data and predict future behavior and trends is increasingly essential for businesses. Real-time stream processing is needed in a variety of different industries such as Manufacturing, Oil and Gas, Automobile, Finance, Online Retail, Smart Grids, and Healthcare. Azure Stream Analytics is a fully managed distributed stream computation service that provides low latency, scalable processing of streaming data in the cloud with an enterprise grade SLA. It features built-in integration with Azur...
Akana has announced the availability of the new Akana Healthcare Solution. The API-driven solution helps healthcare organizations accelerate their transition to being secure, digitally interoperable businesses. It leverages the Health Level Seven International Fast Healthcare Interoperability Resources (HL7 FHIR) standard to enable broader business use of medical data. Akana developed the Healthcare Solution in response to healthcare businesses that want to increase electronic, multi-device access to health records while reducing operating costs and complying with government regulations.
For IoT to grow as quickly as analyst firms’ project, a lot is going to fall on developers to quickly bring applications to market. But the lack of a standard development platform threatens to slow growth and make application development more time consuming and costly, much like we’ve seen in the mobile space. In his session at @ThingsExpo, Mike Weiner, Product Manager of the Omega DevCloud with KORE Telematics Inc., discussed the evolving requirements for developers as IoT matures and conducted a live demonstration of how quickly application development can happen when the need to comply wit...
The Internet of Everything (IoE) brings together people, process, data and things to make networked connections more relevant and valuable than ever before – transforming information into knowledge and knowledge into wisdom. IoE creates new capabilities, richer experiences, and unprecedented opportunities to improve business and government operations, decision making and mission support capabilities.
Explosive growth in connected devices. Enormous amounts of data for collection and analysis. Critical use of data for split-second decision making and actionable information. All three are factors in making the Internet of Things a reality. Yet, any one factor would have an IT organization pondering its infrastructure strategy. How should your organization enhance its IT framework to enable an Internet of Things implementation? In his session at @ThingsExpo, James Kirkland, Red Hat's Chief Architect for the Internet of Things and Intelligent Systems, described how to revolutionize your archit...
MuleSoft has announced the findings of its 2015 Connectivity Benchmark Report on the adoption and business impact of APIs. The findings suggest traditional businesses are quickly evolving into "composable enterprises" built out of hundreds of connected software services, applications and devices. Most are embracing the Internet of Things (IoT) and microservices technologies like Docker. A majority are integrating wearables, like smart watches, and more than half plan to generate revenue with APIs within the next year.