Welcome!

Java IoT Authors: Derek Weeks, Elizabeth White, Jyoti Bansal, Dana Gardner, Liz McMillan

Related Topics: Java IoT

Java IoT: Article

Multi-Threading in Java

Multi-Threading in Java

Introduction
Multi-tasking is rapidly becoming a necessity in software development today. All major operating systems support some form of multi-tasking, and as costs come down it is becoming common for high end systems to incorporate multiple processors.

Multi-Tasking and Threads
At its most basic level, multi-tasking allows multiple programs to be run at the "same" time. The best way to visualize this is to think of each application as running on its own processor.

It would be quite inefficient for each application to have a dedicated processor. A major function of most modern operating systems is to make each application share access to processors by preempting one application to let another one run. Figure 1 illustrates the difference between processor sharing and non-sharing.

Just like programs can run concurrently, pieces of the same program can run concurrently. This ability is known as threading and it is what Java supports. Figure 2 illustrates how a program can be threaded.

Threads are becoming more popular because they are faster to set up, often require less memory and allow better encapsulation.

Commonly, it is the responsibility of the operating system to schedule and preempt each thread, just like it preempts each application. This usually leads to platform-specific methods of multi-threading.

Platform-Independent Threading
Most programming languages rely on operating system-specific calls to support multi-threading. For example: C/C++ programs in Unix often use fork() and Window 95/NT C/C++ programs often use CreateThread(). This can cause a lot of headaches when trying to port an application.

Since one of Java's goals is to "write once, run anywhere", the Java language specification contains support for threading. In theory, this allows multi-threaded programs to be run on any platform which supports Java without concern for how the Java Virtual Machine (JVM) actually implements the threading.

Most JVMs don't actually use native operating system threads to implement threading. They implement their own task scheduling and context switching algorithms within the JVM. This makes the JVM easier to port from one operating system to another. However, Sun is going to be releasing a JVM for the Sun Solaris SPARC which uses native threads to implement Java threads. Having the JVM use native threads can be a real benefit to Java applications because of gained responsiveness to other running processes. Best of all, a Java application doesn't have to do anything special to make use of benefits supplied by different implementations.

Introduction to Java Threading
Java is one of the few common-programming languages that actually supports threading in the language itself.

Java defines a Thread class and a Runnable interface that can be used to define a thread object. Take a look at the Basic Thread example that derives from the Thread class. It creates two threads that display messages asynchronously.

Run this example multiple times and under different JVMs and see how and when the messages are displayed.

Depending on the speed of your machine and the JVM you are using, it may appear that the threads are not being preempted. For example: All of the first thread's messages may be printed followed by all of the second thread's messages.

This usually happens when running on a fast computer or using Just-In-Time (JIT) Java. The reason for this is that one of the sample threads may actually finishing printing all of its messages before it is scheduled for preemption. Try making the threads take longer to finish by increasing MAX_INDEX to 100 (or more) and see what happens.

Runnable Interface
The Basic Thread example derives from the Thread class to create a thread object; However, a class may implement the Runnable interface instead.

Implementing the Runnable interface is useful when a class needs to be multi-threaded and also be derived from another class. Remember that Java supports only single inheritance.

To change the Basic Thread example to use a Runnable interface, change the CountThread definition to:

public class CountThread implements Runnable

Then, change the CountThread object declarations to:

CountThread countRunnable1 =
new CountThread( "Thread 1" );
CountThread countRunnable2 =
new CountThread( "Thread 2" ); Thread countThread1 =
new Thread( CountRunnable1 ); Thread countThread2 =
new Thread( countRunnable2 );

This works because the Thread class supports a special constructor that accepts a Runnable interface. Therefore, we can create a thread based on a Runnable interface. The only method that the interface defines is run().

start() and run()
By calling a Thread object's start() method a Java application tells the JVM to start a separate thread of execution. The JVM will only allow a Thread object to create a single thread of execution for the lifetime of the object. Subsequent calls to an object's start() method will be ignored if the thread associated with the object has terminated; otherwise, the JVM will cause the start() method to throw illegalThreadStateException.

Once the JVM sets up the separate thread of execution it will call the object's run() method from within the newly created thread. The run() method of a Java Thread is like the thread's "main" method. Once started by the JVM, the thread exists until the run() method terminates.

stop()
The stop() method is used to stop the execution of a thread before its run() method terminates.

However, the use of stop() is discouraged because it will not always stop a thread. The stop() method is a synchronized method and as such will not stop other synchronized method blocks. This means that a deadlocked thread can't be stopped, which isn't very useful. Synchronized methods are discussed in the section on monitors.

The best way to stop a thread is to let the run() method exit gracefully by using proper synchronization techniques like the ones that follow.

join()
Join is a simple synchronization mechanism that allows one thread to wait for another to finish. In the Basic Thread example, the main application waits for the threads that it started to finish. Note that the order in which threads are joined is not important.

Thread Synchronization
Writing multi-threaded applications usually involves much more than just starting and stopping threads. Usually some form of thread synchronization is required at key points in time. There are two main types of synchronization that Java supports: Monitors and Mutexes.

Monitors
The term monitor comes from the monolithic monitor (more commonly known today as a kernel) found in operating systems. A fundamental responsibility of an operating system is to protect system resources from unrestricted access, much like a monitor protects the internal data and methods of an object from unrestricted access by other threads.

Each Java object has a monitor and only one thread at a time has access to that monitor. When more than one thread wants access to an object's monitor, they must wait until that monitor is released. Notice that the Thread object itself has nothing to do with implementing monitors. Monitors are inherent in every Java object, and every Java object has its own independent monitor.

Java defines the keyword "synchronized" to gain access to an object's monitor. There are two ways to use synchronize: either by method or by block.

To allow only one thread at a time to access an object's method, use the "synchronized" keyword in the definition of the method.

public synchronized void sem_wait( String currentThreadName )
{
// Statements here are under protection of the object"s monitor.
// Each instance of the object will allow only one thread at a time access to the method.
}

To allow only one thread at a time access to a portion of an object's method, use the block form of synchronized within the method (see Listing 5).

Notice that the block form of "synchronized" takes an object as a parameter. The monitor associated with the given object is used to perform the synchronization.

Although we can specify individual methods and blocks to be synchronized, there is still only a single monitor per object. Once a thread enters a synchronized section of an object it has acquired that object's monitor. Since the object's monitor is now acquired, all other threads trying to acquire that monitor will have to wait until it is released. The monitor will be released when the one thread that entered the object's synchronized section leaves the section.

While a thread has acquired an object's monitor, it will immediately succeed in subsequent attempts to acquire that same object's monitor. This makes sense because the purpose of monitors is to allow only a single thread access to some section of code. Since the thread already has access to the monitor it is safe to let that thread execute the code. This is very useful because it means that an object's synchronized methods may call each other without fear of delay or deadlocking.

If for some reason a thread acquires an object's monitor and doesn't release it, the waiting threads will wait "forever". This is called a deadlock and can occur very easily. Deadlocks can be hard to find in code and may not show up under testing depending on the timing of the threads. It is recommended that a monitor be used to protect only what is absolutely necessary for correct behavior. Use the synchronized block mechanism to limit the scope of the monitor. In addition, don't call any methods within a synchronized block except the class Object methods (wait, notify,). This will greatly reduce the chances of deadlocks.

Remember that monitors are based on objects so be careful when using references to objects. Each reference to an object uses the monitor of the object being referenced.

One complexity of monitors is that static methods may also be synchronized. However, a static method is not associated with an object. To handle this, all static synchronized methods of a class share a single monitor that works independently of an object's monitor. When a synchronized method calls a static synchronized method, it must acquire another monitor (the one associated with all static synchronized methods of the class).

Mutexes
Mutexes are used when two or more threads can't interleave certain types of operations. Thus, one sequence must be completed before the other is started. The join() method, used in the Basic Thread example, was a simple fixed use mutex that waits for the thread being joined to stop.

The generic mutex methods: wait(), notify() and notifyAll() are available to all Java objects because they are declared in the Object Java class. These methods allow any thread to wait for any other thread to complete some activity. When the activity is complete, the thread notifies one (or all if notifyAll is called) waiting threads.

wait()
The thread that calls an object's wait() method will be suspended and any monitors the thread had acquired will be released. The thread will remain suspended until it is notified and the monitors needed by the thread can be reacquired.

In order for a thread to call an object's wait() method, it must own the object's monitor.

notify() and notifyAll()
A thread calls an object's notify() method when it wants to let a thread waiting on that object know that some activity has been completed. A waiting thread will be awakened and put back in the queue of running threads. However, the awakened thread still has to reacquire all monitors that it released when it called wait().

The thread that calls an object's notify() or notifyAll() method must have possession of the object's monitor.

When notifyAll() is called, all threads that are currently waiting on the object's monitor will be a awakened.

Semaphores
One of the problems with Java Mutexes is that notify will only wake up threads that are currently waiting. This can cause synchronization headaches because one must make sure that a thread waits before notify is called. In other words, the notification is lost when there is no one waiting. While not directly supported by Java, a semaphore can be emulated to solve this problem.

Just like mutexes, semaphores are used when two or more threads can't interleave certain types of operations. Thus, one sequence must be completed before the other is started. However, a semaphore contains more state information that allows it to overcome the limitations of Java mutexes.

We can emulate the most common form of semaphore, called a blocked-set semaphore, by using monitors and mutexes. The blocked-set semaphore has the following definition shown in Listing 4. A single thread awakens one suspended thread.

See the example Semaphore.java for an implementation of this semaphore.

Notice that we will only call notify() if we have first done a wait(), and we will remember when we called sem_signal() without wait() being called.

Putting it all Together
One of the classic concurrent programming problems is the producer/consumer problem. It involves two threads: one producer thread and one consumer thread. Take a look at the producer/consumer example.

The producer produces integer numbers and prints a message that states an integer was produced. The consumer consumes an integer number, supplied by the producer, and prints a message that states an integer was consumed. When the consumer receives the product (number) 0 it knows the producer is done and quits.

A small integer item buffer is used so that the producer can make multiple products without having to wait for the consumer to consume them.

The example just produces integer numbers to keep the example concise. However, the producer/consumer principle can be used to solve many real world problems. A producer could search for files and produce found filenames to a consumer window. A producer could do database queries that send results to a report window. There are countless concurrency problems that may be solved with this technique.

Conclusion
Java developers not only get a great object-oriented language, but also get a language that supports multi-threading. However, just like good object-oriented development requires a different way of thinking, good threaded programming requires a different way of thinking - with the rewards just as great.

Be creative and remember that all aspects of Java can be threaded to solve everyday problems: Windowing interfaces (AWT), saving and loading files (File I/O) and reusable components (Beansª).

References
M. Ben-Ari, "Principles of Concurrent and Distributed Programming", Prentice Hall, New York, 1990.
S. Oaks & H. Wong, "Java Threads", O'Reilly, MA 1997

More Stories By Tod Cunningham

Tod Cunningham is a software engineer with development experience in real-time multi-processing systems written in C/C++. as well as Java. He graduated from the University of Toledo in 1992 with a BS in Computer Science and Engineering.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
With the introduction of IoT and Smart Living in every aspect of our lives, one question has become relevant: What are the security implications? To answer this, first we have to look and explore the security models of the technologies that IoT is founded upon. In his session at @ThingsExpo, Nevi Kaja, a Research Engineer at Ford Motor Company, will discuss some of the security challenges of the IoT infrastructure and relate how these aspects impact Smart Living. The material will be delivered i...
Apache Hadoop is emerging as a distributed platform for handling large and fast incoming streams of data. Predictive maintenance, supply chain optimization, and Internet-of-Things analysis are examples where Hadoop provides the scalable storage, processing, and analytics platform to gain meaningful insights from granular data that is typically only valuable from a large-scale, aggregate view. One architecture useful for capturing and analyzing streaming data is the Lambda Architecture, represent...
As organizations realize the scope of the Internet of Things, gaining key insights from Big Data, through the use of advanced analytics, becomes crucial. However, IoT also creates the need for petabyte scale storage of data from millions of devices. A new type of Storage is required which seamlessly integrates robust data analytics with massive scale. These storage systems will act as “smart systems” provide in-place analytics that speed discovery and enable businesses to quickly derive meaningf...
Your homes and cars can be automated and self-serviced. Why can't your storage? From simply asking questions to analyze and troubleshoot your infrastructure, to provisioning storage with snapshots, recovery and replication, your wildest sci-fi dream has come true. In his session at @DevOpsSummit at 20th Cloud Expo, Dan Florea, Director of Product Management at Tintri, will provide a ChatOps demo where you can talk to your storage and manage it from anywhere, through Slack and similar services ...
SYS-CON Events announced today that Ocean9will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Ocean9 provides cloud services for Backup, Disaster Recovery (DRaaS) and instant Innovation, and redefines enterprise infrastructure with its cloud native subscription offerings for mission critical SAP workloads.
The taxi industry never saw Uber coming. Startups are a threat to incumbents like never before, and a major enabler for startups is that they are instantly “cloud ready.” If innovation moves at the pace of IT, then your company is in trouble. Why? Because your data center will not keep up with frenetic pace AWS, Microsoft and Google are rolling out new capabilities In his session at 20th Cloud Expo, Don Browning, VP of Cloud Architecture at Turner, will posit that disruption is inevitable for c...
SYS-CON Events announced today that SoftLayer, an IBM Company, has been named “Gold Sponsor” of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2016, at the Javits Center in New York, New York. SoftLayer, an IBM Company, provides cloud infrastructure as a service from a growing number of data centers and network points of presence around the world. SoftLayer’s customers range from Web startups to global enterprises.
SYS-CON Events announced today that Conference Guru has been named “Media Sponsor” of SYS-CON's 20th International Cloud Expo, which will take place on June 6–8, 2017, at the Javits Center in New York City, NY. A valuable conference experience generates new contacts, sales leads, potential strategic partners and potential investors; helps gather competitive intelligence and even provides inspiration for new products and services. Conference Guru works with conference organizers to pass great dea...
SYS-CON Events announced today that Technologic Systems Inc., an embedded systems solutions company, will exhibit at SYS-CON's @ThingsExpo, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Technologic Systems is an embedded systems company with headquarters in Fountain Hills, Arizona. They have been in business for 32 years, helping more than 8,000 OEM customers and building over a hundred COTS products that have never been discontinued. Technologic Systems’ pr...
SYS-CON Events announced today that CA Technologies has been named “Platinum Sponsor” of SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY, and the 21st International Cloud Expo®, which will take place October 31-November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. CA Technologies helps customers succeed in a future where every business – from apparel to energy – is being rewritten by software. From ...
With major technology companies and startups seriously embracing Cloud strategies, now is the perfect time to attend @CloudExpo | @ThingsExpo, June 6-8, 2017, at the Javits Center in New York City, NY and October 31 - November 2, 2017, Santa Clara Convention Center, CA. Learn what is going on, contribute to the discussions, and ensure that your enterprise is on the right path to Digital Transformation.
SYS-CON Events announced today that Telecom Reseller has been named “Media Sponsor” of SYS-CON's 20th International Cloud Expo, which will take place on June 6–8, 2017, at the Javits Center in New York City, NY. Telecom Reseller reports on Unified Communications, UCaaS, BPaaS for enterprise and SMBs. They report extensively on both customer premises based solutions such as IP-PBX as well as cloud based and hosted platforms.
SYS-CON Events announced today that Loom Systems will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Founded in 2015, Loom Systems delivers an advanced AI solution to predict and prevent problems in the digital business. Loom stands alone in the industry as an AI analysis platform requiring no prior math knowledge from operators, leveraging the existing staff to succeed in the digital era. With offices in S...
SYS-CON Events announced today that Interoute, owner-operator of one of Europe's largest networks and a global cloud services platform, has been named “Bronze Sponsor” of SYS-CON's 20th Cloud Expo, which will take place on June 6-8, 2017 at the Javits Center in New York, New York. Interoute is the owner-operator of one of Europe's largest networks and a global cloud services platform which encompasses 12 data centers, 14 virtual data centers and 31 colocation centers, with connections to 195 add...
SYS-CON Events announced today that T-Mobile will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. As America's Un-carrier, T-Mobile US, Inc., is redefining the way consumers and businesses buy wireless services through leading product and service innovation. The Company's advanced nationwide 4G LTE network delivers outstanding wireless experiences to 67.4 million customers who are unwilling to compromise on ...
In his session at @ThingsExpo, Eric Lachapelle, CEO of the Professional Evaluation and Certification Board (PECB), will provide an overview of various initiatives to certifiy the security of connected devices and future trends in ensuring public trust of IoT. Eric Lachapelle is the Chief Executive Officer of the Professional Evaluation and Certification Board (PECB), an international certification body. His role is to help companies and individuals to achieve professional, accredited and worldw...
SYS-CON Events announced today that Infranics will exhibit at SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Since 2000, Infranics has developed SysMaster Suite, which is required for the stable and efficient management of ICT infrastructure. The ICT management solution developed and provided by Infranics continues to add intelligence to the ICT infrastructure through the IMC (Infra Management Cycle) based on mathemat...
SYS-CON Events announced today that SD Times | BZ Media has been named “Media Sponsor” of SYS-CON's 20th International Cloud Expo, which will take place on June 6–8, 2017, at the Javits Center in New York City, NY. BZ Media LLC is a high-tech media company that produces technical conferences and expositions, and publishes a magazine, newsletters and websites in the software development, SharePoint, mobile development and commercial UAV markets.
SYS-CON Events announced today that Cloudistics, an on-premises cloud computing company, has been named “Bronze Sponsor” of SYS-CON's 20th International Cloud Expo®, which will take place on June 6-8, 2017, at the Javits Center in New York City, NY. Cloudistics delivers a complete public cloud experience with composable on-premises infrastructures to medium and large enterprises. Its software-defined technology natively converges network, storage, compute, virtualization, and management into a ...
Now that the world has connected “things,” we need to build these devices as truly intelligent in order to create instantaneous and precise results. This means you have to do as much of the processing at the point of entry as you can: at the edge. The killer use cases for IoT are becoming manifest through AI engines on edge devices. An autonomous car has this dual edge/cloud analytics model, producing precise, real-time results. In his session at @ThingsExpo, John Crupi, Vice President and Eng...