Click here to close now.

Welcome!

Java Authors: Pat Romanski, Carmen Gonzalez, AppDynamics Blog, Elizabeth White, Esmeralda Swartz

Related Topics: Java

Java: Article

Multi-Threading in Java

Multi-Threading in Java

Introduction
Multi-tasking is rapidly becoming a necessity in software development today. All major operating systems support some form of multi-tasking, and as costs come down it is becoming common for high end systems to incorporate multiple processors.

Multi-Tasking and Threads
At its most basic level, multi-tasking allows multiple programs to be run at the "same" time. The best way to visualize this is to think of each application as running on its own processor.

It would be quite inefficient for each application to have a dedicated processor. A major function of most modern operating systems is to make each application share access to processors by preempting one application to let another one run. Figure 1 illustrates the difference between processor sharing and non-sharing.

Just like programs can run concurrently, pieces of the same program can run concurrently. This ability is known as threading and it is what Java supports. Figure 2 illustrates how a program can be threaded.

Threads are becoming more popular because they are faster to set up, often require less memory and allow better encapsulation.

Commonly, it is the responsibility of the operating system to schedule and preempt each thread, just like it preempts each application. This usually leads to platform-specific methods of multi-threading.

Platform-Independent Threading
Most programming languages rely on operating system-specific calls to support multi-threading. For example: C/C++ programs in Unix often use fork() and Window 95/NT C/C++ programs often use CreateThread(). This can cause a lot of headaches when trying to port an application.

Since one of Java's goals is to "write once, run anywhere", the Java language specification contains support for threading. In theory, this allows multi-threaded programs to be run on any platform which supports Java without concern for how the Java Virtual Machine (JVM) actually implements the threading.

Most JVMs don't actually use native operating system threads to implement threading. They implement their own task scheduling and context switching algorithms within the JVM. This makes the JVM easier to port from one operating system to another. However, Sun is going to be releasing a JVM for the Sun Solaris SPARC which uses native threads to implement Java threads. Having the JVM use native threads can be a real benefit to Java applications because of gained responsiveness to other running processes. Best of all, a Java application doesn't have to do anything special to make use of benefits supplied by different implementations.

Introduction to Java Threading
Java is one of the few common-programming languages that actually supports threading in the language itself.

Java defines a Thread class and a Runnable interface that can be used to define a thread object. Take a look at the Basic Thread example that derives from the Thread class. It creates two threads that display messages asynchronously.

Run this example multiple times and under different JVMs and see how and when the messages are displayed.

Depending on the speed of your machine and the JVM you are using, it may appear that the threads are not being preempted. For example: All of the first thread's messages may be printed followed by all of the second thread's messages.

This usually happens when running on a fast computer or using Just-In-Time (JIT) Java. The reason for this is that one of the sample threads may actually finishing printing all of its messages before it is scheduled for preemption. Try making the threads take longer to finish by increasing MAX_INDEX to 100 (or more) and see what happens.

Runnable Interface
The Basic Thread example derives from the Thread class to create a thread object; However, a class may implement the Runnable interface instead.

Implementing the Runnable interface is useful when a class needs to be multi-threaded and also be derived from another class. Remember that Java supports only single inheritance.

To change the Basic Thread example to use a Runnable interface, change the CountThread definition to:

public class CountThread implements Runnable

Then, change the CountThread object declarations to:

CountThread countRunnable1 =
new CountThread( "Thread 1" );
CountThread countRunnable2 =
new CountThread( "Thread 2" ); Thread countThread1 =
new Thread( CountRunnable1 ); Thread countThread2 =
new Thread( countRunnable2 );

This works because the Thread class supports a special constructor that accepts a Runnable interface. Therefore, we can create a thread based on a Runnable interface. The only method that the interface defines is run().

start() and run()
By calling a Thread object's start() method a Java application tells the JVM to start a separate thread of execution. The JVM will only allow a Thread object to create a single thread of execution for the lifetime of the object. Subsequent calls to an object's start() method will be ignored if the thread associated with the object has terminated; otherwise, the JVM will cause the start() method to throw illegalThreadStateException.

Once the JVM sets up the separate thread of execution it will call the object's run() method from within the newly created thread. The run() method of a Java Thread is like the thread's "main" method. Once started by the JVM, the thread exists until the run() method terminates.

stop()
The stop() method is used to stop the execution of a thread before its run() method terminates.

However, the use of stop() is discouraged because it will not always stop a thread. The stop() method is a synchronized method and as such will not stop other synchronized method blocks. This means that a deadlocked thread can't be stopped, which isn't very useful. Synchronized methods are discussed in the section on monitors.

The best way to stop a thread is to let the run() method exit gracefully by using proper synchronization techniques like the ones that follow.

join()
Join is a simple synchronization mechanism that allows one thread to wait for another to finish. In the Basic Thread example, the main application waits for the threads that it started to finish. Note that the order in which threads are joined is not important.

Thread Synchronization
Writing multi-threaded applications usually involves much more than just starting and stopping threads. Usually some form of thread synchronization is required at key points in time. There are two main types of synchronization that Java supports: Monitors and Mutexes.

Monitors
The term monitor comes from the monolithic monitor (more commonly known today as a kernel) found in operating systems. A fundamental responsibility of an operating system is to protect system resources from unrestricted access, much like a monitor protects the internal data and methods of an object from unrestricted access by other threads.

Each Java object has a monitor and only one thread at a time has access to that monitor. When more than one thread wants access to an object's monitor, they must wait until that monitor is released. Notice that the Thread object itself has nothing to do with implementing monitors. Monitors are inherent in every Java object, and every Java object has its own independent monitor.

Java defines the keyword "synchronized" to gain access to an object's monitor. There are two ways to use synchronize: either by method or by block.

To allow only one thread at a time to access an object's method, use the "synchronized" keyword in the definition of the method.

public synchronized void sem_wait( String currentThreadName )
{
// Statements here are under protection of the object"s monitor.
// Each instance of the object will allow only one thread at a time access to the method.
}

To allow only one thread at a time access to a portion of an object's method, use the block form of synchronized within the method (see Listing 5).

Notice that the block form of "synchronized" takes an object as a parameter. The monitor associated with the given object is used to perform the synchronization.

Although we can specify individual methods and blocks to be synchronized, there is still only a single monitor per object. Once a thread enters a synchronized section of an object it has acquired that object's monitor. Since the object's monitor is now acquired, all other threads trying to acquire that monitor will have to wait until it is released. The monitor will be released when the one thread that entered the object's synchronized section leaves the section.

While a thread has acquired an object's monitor, it will immediately succeed in subsequent attempts to acquire that same object's monitor. This makes sense because the purpose of monitors is to allow only a single thread access to some section of code. Since the thread already has access to the monitor it is safe to let that thread execute the code. This is very useful because it means that an object's synchronized methods may call each other without fear of delay or deadlocking.

If for some reason a thread acquires an object's monitor and doesn't release it, the waiting threads will wait "forever". This is called a deadlock and can occur very easily. Deadlocks can be hard to find in code and may not show up under testing depending on the timing of the threads. It is recommended that a monitor be used to protect only what is absolutely necessary for correct behavior. Use the synchronized block mechanism to limit the scope of the monitor. In addition, don't call any methods within a synchronized block except the class Object methods (wait, notify,). This will greatly reduce the chances of deadlocks.

Remember that monitors are based on objects so be careful when using references to objects. Each reference to an object uses the monitor of the object being referenced.

One complexity of monitors is that static methods may also be synchronized. However, a static method is not associated with an object. To handle this, all static synchronized methods of a class share a single monitor that works independently of an object's monitor. When a synchronized method calls a static synchronized method, it must acquire another monitor (the one associated with all static synchronized methods of the class).

Mutexes
Mutexes are used when two or more threads can't interleave certain types of operations. Thus, one sequence must be completed before the other is started. The join() method, used in the Basic Thread example, was a simple fixed use mutex that waits for the thread being joined to stop.

The generic mutex methods: wait(), notify() and notifyAll() are available to all Java objects because they are declared in the Object Java class. These methods allow any thread to wait for any other thread to complete some activity. When the activity is complete, the thread notifies one (or all if notifyAll is called) waiting threads.

wait()
The thread that calls an object's wait() method will be suspended and any monitors the thread had acquired will be released. The thread will remain suspended until it is notified and the monitors needed by the thread can be reacquired.

In order for a thread to call an object's wait() method, it must own the object's monitor.

notify() and notifyAll()
A thread calls an object's notify() method when it wants to let a thread waiting on that object know that some activity has been completed. A waiting thread will be awakened and put back in the queue of running threads. However, the awakened thread still has to reacquire all monitors that it released when it called wait().

The thread that calls an object's notify() or notifyAll() method must have possession of the object's monitor.

When notifyAll() is called, all threads that are currently waiting on the object's monitor will be a awakened.

Semaphores
One of the problems with Java Mutexes is that notify will only wake up threads that are currently waiting. This can cause synchronization headaches because one must make sure that a thread waits before notify is called. In other words, the notification is lost when there is no one waiting. While not directly supported by Java, a semaphore can be emulated to solve this problem.

Just like mutexes, semaphores are used when two or more threads can't interleave certain types of operations. Thus, one sequence must be completed before the other is started. However, a semaphore contains more state information that allows it to overcome the limitations of Java mutexes.

We can emulate the most common form of semaphore, called a blocked-set semaphore, by using monitors and mutexes. The blocked-set semaphore has the following definition shown in Listing 4. A single thread awakens one suspended thread.

See the example Semaphore.java for an implementation of this semaphore.

Notice that we will only call notify() if we have first done a wait(), and we will remember when we called sem_signal() without wait() being called.

Putting it all Together
One of the classic concurrent programming problems is the producer/consumer problem. It involves two threads: one producer thread and one consumer thread. Take a look at the producer/consumer example.

The producer produces integer numbers and prints a message that states an integer was produced. The consumer consumes an integer number, supplied by the producer, and prints a message that states an integer was consumed. When the consumer receives the product (number) 0 it knows the producer is done and quits.

A small integer item buffer is used so that the producer can make multiple products without having to wait for the consumer to consume them.

The example just produces integer numbers to keep the example concise. However, the producer/consumer principle can be used to solve many real world problems. A producer could search for files and produce found filenames to a consumer window. A producer could do database queries that send results to a report window. There are countless concurrency problems that may be solved with this technique.

Conclusion
Java developers not only get a great object-oriented language, but also get a language that supports multi-threading. However, just like good object-oriented development requires a different way of thinking, good threaded programming requires a different way of thinking - with the rewards just as great.

Be creative and remember that all aspects of Java can be threaded to solve everyday problems: Windowing interfaces (AWT), saving and loading files (File I/O) and reusable components (Beansª).

References
M. Ben-Ari, "Principles of Concurrent and Distributed Programming", Prentice Hall, New York, 1990.
S. Oaks & H. Wong, "Java Threads", O'Reilly, MA 1997

More Stories By Tod Cunningham

Tod Cunningham is a software engineer with development experience in real-time multi-processing systems written in C/C++. as well as Java. He graduated from the University of Toledo in 1992 with a BS in Computer Science and Engineering.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
SYS-CON Media announced today that @WebRTCSummit Blog, the largest WebRTC resource in the world, has been launched. @WebRTCSummit Blog offers top articles, news stories, and blog posts from the world's well-known experts and guarantees better exposure for its authors than any other publication. @WebRTCSummit Blog can be bookmarked ▸ Here @WebRTCSummit conference site can be bookmarked ▸ Here
SYS-CON Events announced today that Cisco, the worldwide leader in IT that transforms how people connect, communicate and collaborate, has been named “Gold Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Cisco makes amazing things happen by connecting the unconnected. Cisco has shaped the future of the Internet by becoming the worldwide leader in transforming how people connect, communicate and collaborate. Cisco and our partners are building the platform for the Internet of Everything by connecting the...
Temasys has announced senior management additions to its team. Joining are David Holloway as Vice President of Commercial and Nadine Yap as Vice President of Product. Over the past 12 months Temasys has doubled in size as it adds new customers and expands the development of its Skylink platform. Skylink leads the charge to move WebRTC, traditionally seen as a desktop, browser based technology, to become a ubiquitous web communications technology on web and mobile, as well as Internet of Things compatible devices.
SYS-CON Events announced today that robomq.io will exhibit at SYS-CON's @ThingsExpo, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. robomq.io is an interoperable and composable platform that connects any device to any application. It helps systems integrators and the solution providers build new and innovative products and service for industries requiring monitoring or intelligence from devices and sensors.
Wearable technology was dominant at this year’s International Consumer Electronics Show (CES) , and MWC was no exception to this trend. New versions of favorites, such as the Samsung Gear (three new products were released: the Gear 2, the Gear 2 Neo and the Gear Fit), shared the limelight with new wearables like Pebble Time Steel (the new premium version of the company’s previously released smartwatch) and the LG Watch Urbane. The most dramatic difference at MWC was an emphasis on presenting wearables as fashion accessories and moving away from the original clunky technology associated with t...
Docker is an excellent platform for organizations interested in running microservices. It offers portability and consistency between development and production environments, quick provisioning times, and a simple way to isolate services. In his session at DevOps Summit at 16th Cloud Expo, Shannon Williams, co-founder of Rancher Labs, will walk through these and other benefits of using Docker to run microservices, and provide an overview of RancherOS, a minimalist distribution of Linux designed expressly to run Docker. He will also discuss Rancher, an orchestration and service discovery platf...
SYS-CON Events announced today that Akana, formerly SOA Software, has been named “Bronze Sponsor” of SYS-CON's 16th International Cloud Expo® New York, which will take place June 9-11, 2015, at the Javits Center in New York City, NY. Akana’s comprehensive suite of API Management, API Security, Integrated SOA Governance, and Cloud Integration solutions helps businesses accelerate digital transformation by securely extending their reach across multiple channels – mobile, cloud and Internet of Things. Akana enables enterprises to share data as APIs, connect and integrate applications, drive part...
SYS-CON Events announced today that Vitria Technology, Inc. will exhibit at SYS-CON’s @ThingsExpo, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Vitria will showcase the company’s new IoT Analytics Platform through live demonstrations at booth #330. Vitria’s IoT Analytics Platform, fully integrated and powered by an operational intelligence engine, enables customers to rapidly build and operationalize advanced analytics to deliver timely business outcomes for use cases across the industrial, enterprise, and consumer segments.
SYS-CON Events announced today that Solgenia will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY, and the 17th International Cloud Expo®, which will take place on November 3–5, 2015, at the Santa Clara Convention Center in Santa Clara, CA. Solgenia is the global market leader in Cloud Collaboration and Cloud Infrastructure software solutions. Designed to “Bridge the Gap” between Personal and Professional Social, Mobile and Cloud user experiences, our solutions help large and medium-sized organizations dr...
SYS-CON Events announced today that Liaison Technologies, a leading provider of data management and integration cloud services and solutions, has been named "Silver Sponsor" of SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York, NY. Liaison Technologies is a recognized market leader in providing cloud-enabled data integration and data management solutions to break down complex information barriers, enabling enterprises to make smarter decisions, faster.
Cloud is not a commodity. And no matter what you call it, computing doesn’t come out of the sky. It comes from physical hardware inside brick and mortar facilities connected by hundreds of miles of networking cable. And no two clouds are built the same way. SoftLayer gives you the highest performing cloud infrastructure available. One platform that takes data centers around the world that are full of the widest range of cloud computing options, and then integrates and automates everything. Join SoftLayer on June 9 at 16th Cloud Expo to learn about IBM Cloud's SoftLayer platform, explore se...
The WebRTC Summit 2014 New York, to be held June 9-11, 2015, at the Javits Center in New York, NY, announces that its Call for Papers is open. Topics include all aspects of improving IT delivery by eliminating waste through automated business models leveraging cloud technologies. WebRTC Summit is co-located with 16th International Cloud Expo, @ThingsExpo, Big Data Expo, and DevOps Summit.
@ThingsExpo has been named the Top 5 Most Influential M2M Brand by Onalytica in the ‘Machine to Machine: Top 100 Influencers and Brands.' Onalytica analyzed the online debate on M2M by looking at over 85,000 tweets to provide the most influential individuals and brands that drive the discussion. According to Onalytica the "analysis showed a very engaged community with a lot of interactive tweets. The M2M discussion seems to be more fragmented and driven by some of the major brands present in the M2M space. This really allows some room for influential individuals to create more high value inter...
The world's leading Cloud event, Cloud Expo has launched Microservices Journal on the SYS-CON.com portal, featuring over 19,000 original articles, news stories, features, and blog entries. DevOps Journal is focused on this critical enterprise IT topic in the world of cloud computing. Microservices Journal offers top articles, news stories, and blog posts from the world's well-known experts and guarantees better exposure for its authors than any other publication. Follow new article posts on Twitter at @MicroservicesE
SYS-CON Events announced today the IoT Bootcamp – Jumpstart Your IoT Strategy, being held June 9–10, 2015, in conjunction with 16th Cloud Expo and Internet of @ThingsExpo at the Javits Center in New York City. This is your chance to jumpstart your IoT strategy. Combined with real-world scenarios and use cases, the IoT Bootcamp is not just based on presentations but includes hands-on demos and walkthroughs. We will introduce you to a variety of Do-It-Yourself IoT platforms including Arduino, Raspberry Pi, BeagleBone, Spark and Intel Edison. You will also get an overview of cloud technologies s...
SYS-CON Events announced today that SafeLogic has been named “Bag Sponsor” of SYS-CON's 16th International Cloud Expo® New York, which will take place June 9-11, 2015, at the Javits Center in New York City, NY. SafeLogic provides security products for applications in mobile and server/appliance environments. SafeLogic’s flagship product CryptoComply is a FIPS 140-2 validated cryptographic engine designed to secure data on servers, workstations, appliances, mobile devices, and in the Cloud.
Containers and microservices have become topics of intense interest throughout the cloud developer and enterprise IT communities. Accordingly, attendees at the upcoming 16th Cloud Expo at the Javits Center in New York June 9-11 will find fresh new content in a new track called PaaS | Containers & Microservices Containers are not being considered for the first time by the cloud community, but a current era of re-consideration has pushed them to the top of the cloud agenda. With the launch of Docker's initial release in March of 2013, interest was revved up several notches. Then late last...
SOA Software has changed its name to Akana. With roots in Web Services and SOA Governance, Akana has established itself as a leader in API Management and is expanding into cloud integration as an alternative to the traditional heavyweight enterprise service bus (ESB). The company recently announced that it achieved more than 90% year-over-year growth. As Akana, the company now addresses the evolution and diversification of SOA, unifying security, management, and DevOps across SOA, APIs, microservices, and more.
After making a doctor’s appointment via your mobile device, you receive a calendar invite. The day of your appointment, you get a reminder with the doctor’s location and contact information. As you enter the doctor’s exam room, the medical team is equipped with the latest tablet containing your medical history – he or she makes real time updates to your medical file. At the end of your visit, you receive an electronic prescription to your preferred pharmacy and can schedule your next appointment.
GENBAND has announced that SageNet is leveraging the Nuvia platform to deliver Unified Communications as a Service (UCaaS) to its large base of retail and enterprise customers. Nuvia’s cloud-based solution provides SageNet’s customers with a full suite of business communications and collaboration tools. Two large national SageNet retail customers have recently signed up to deploy the Nuvia platform and the company will continue to sell the service to new and existing customers. Nuvia’s capabilities include HD voice, video, multimedia messaging, mobility, conferencing, Web collaboration, deskt...