Welcome!

Java IoT Authors: Yeshim Deniz, Pat Romanski, Liz McMillan, Elizabeth White, Frank Lupo

Related Topics: Java IoT

Java IoT: Article

Reflection & Introspection: Objects Exposed

Reflection & Introspection: Objects Exposed

One of the salient aspects of the Java language is the control it gives to developers for dynamically generating and reusing code. This allows the language to offer Java programmers the ability to write code in which the actual behavior is determined at runtime. Of the eleven buzzwords used to define Java, this article is going to focus on the dynamic nature of the Java programming language.

One of the salient aspects of the Java language is the control it gives to developers for dynamically generating and reusing code. This allows the language to offer Java programmers the ability to write code in which the actual behavior is determined at runtime. Of the eleven buzzwords used to define Java, this article is going to focus on the dynamic nature of the Java programming language.Introspection Uses Reflection
Reflection and introspection are very closely related. Reflection is a low-level facility that allows the code to examine the internals of any class or object at runtime. Introspection builds on this facility and provides a more convenient interface for examining Beans. In fact, the relationship between reflection and introspection is very similar to the relationship between JavaBeans and other Java classes. JavaBeans are simply normal Java objects with certain design patterns enforced in their nomenclature. Introspection assumes these design patterns on the object that it is inspecting and uses low-level reflection to examine the object's internals.

The Reflection API
The Reflection API became a part of core Java with release 1.1 of the JDK. The API is defined across the following:

  • The new methods added to the java.lang.Class class in JDK 1.1
  • The java.lang.reflect package defined in JDK1.1

    The class java.lang.Class contains methods that return instances of classes/interfaces defined in the java.lang.reflect package. A detailed description of the API is beyond the scope of this article and can be found in any standard Java text. However, the classes that comprise the Reflection API are listed in Table 1.

    The Introspection API
    The Introspection API consists of several classes in the java.beans package. Again, a detailed description of the API is beyond the scope of this article and can be found in any standard Java text. The main classes in the Introspection API are listed in Table 2.

    The Costs of Usage
    Reflection and Introspection are powerful tools that contribute to the flexibility provided by the Java language. However, these APIs should be used only as needed and after taking into account the costs associated with their usage:

  • Reflection and Introspection method calls have a substantial performance overhead.
  • Using reflection makes the code much more complex and harder to understand than using direct method calls.
  • Errors in method invocation are discovered at runtime instead of being caught by the compiler.
  • The code becomes type-unsafe.

    The Reflection and Introspection APIs should be used only when other forms of object-oriented programming are not appropriate.

    The following examples demonstrate the use of Reflection and Introspection to develop some useful Java utilities.

    Cookie Factory
    Our first example illustrates the use of Reflection to build a utility that allows us to instantiate objects of types derived from a "Cookie" interface. The actual type of the object instantiated is determined by a String parameter, which contains the name of the actual class. The code for the example is shown in Listings 1and 2.

    Listing 1 defines the Cookie interface and the derived classes. The Cookie interface is simply a marker interface which is implemented by the classes FortuneCookie and MisFortuneCookie. Both these classes define a single static method which prints out a string and returns a new instance of the respective class.

    Listing 2 shows the CookieFactory class which is capable of producing objects derived from the "Cookie" interface. It defines a single method createCookie that takes a String parameter, className. The Class corresponding to this name is obtained from the Class class by calling

    c = Class.forName(className);

    Once we have the class, we need to obtain the method to be called on it. The name of the method is "newCookie." In this example, we are assuming that the name of the method is available at this point. The parameter types for the method are filled in an array of type Class and this is used to get the actual Method object as follows:

    method = c.getMethod("newCookie", pTypes);

    Once the Method object is available, the static method is invoked on the class after constructing an array of Objects that contains the actual parameter instances:

    cookie = (Cookie)(method.invoke(c, params));

    A simple tester for the class is provided in the main() method. This first constructs the CookieFactory and then creates instances of the FortuneCookie and MisFortuneCookie class. The output from the program is shown in Figure 3.

    An X-Ray Class
    Our second example illustrates the use of reflection to build a utility that allows us to view all the methods, constructors, fields, interfaces and inheritance for a supplied class. The class being X-rayed is specified by a String parameter which contains the name of the actual class. The code for the example is shown in Listing 4.

    In order for the X-ray class program to determine the methods, constructors, fields and interfaces contained in the requested class, it must instantiate an object of the class by calling:

    c = Class.forName(className);

    After instantiating the class, the utility determines the selected operation on that class based on a second user-supplied string parameter, which can have one of the following values:

    localMethods
    allMethods
    Constructors
    fields
    interface
    inheritance

    The local methods contained in the specified class may be found by calling:

    methodList = c.getDeclaredMethods();

    This call returns a Method[] that contains all the methods declared in the local class including private, protected and public. This call excludes inherited methods. A list of all the public methods, both inherited and local, may be obtained by calling:

    methodList = c.getMethods();

    Constructor methods are not included in the return Method[] of this call. Retrieving a list of constructors for a specific class can be accomplished by calling:

    constructorList = c.getDeclaredConstructors();

    This call returns a constructor[] that contains all of the private, protected and public constructors declared on the local class. A list that includes only the public constructors can be constructed by calling:

    constructorList = c.getConstructors();

    Class variables can be retrieved as Field[] information. To access a complete list of fields from a class including private, protected and public, we call:

    fieldList = c.getDeclaredFields();A list that includes only the public fields can be retrieved by calling:

    fieldList = c.getFields();

    Information concerning the interfaces implemented by a class can be accessed by calling:

    interfaceList = c.getInterfaces();

    This call returns a Class[] that contains all of the interfaces implemented by the local class. Notice that this call doesn't have a getDeclaredInterfaces() counterpart like the other methods.

    To access the inheritance information in the class, we get the name of each one of the superclasses in the inheritance tree. This is done in a while loop by calling:

    classRef = c.getSuperclass();

    We use this mechanism to return a class[] with all of the classes that participate in the extension of the local class. The output of the program for obtaining the inheritance hierarchy of the java.applet.Applet class is given in Figure 4.

    Notice that of the various methods presented on this section, the only method that recursively provided information contained in its inheritance tree was the c.getMethods() call. The other methods only provided information contained by the local class.

    An X-Ray Bean
    Our third example illustrates the use of Introspection to build a utility that allows us to view all the methods, properties and events for a supplied JavaBean class. The Bean being X-rayed is specified by a String parameter which contains the name of the actual Bean class. The code for the example is shown in Listing 3.

    In order for the X-ray Bean program to determine the methods, properties and events contained in the requested class, it must instantiate an object of the class by calling:

    c = Class.forName(className);

    After instantiating the class, the utility must access the BeanInfo for the instantiated Bean. BeanInfo data can be accessed via the Introspector class by calling:

    bi = Introspector.getBeanInfo(c);

    Next, the utility determines the selected operation on that class based on the second user-supplied parameter entered at the command line (i.e., methods, properties and events). The localMethods contained by the specified Bean can be found by calling:

    methodDescriptorList = bi.getMethodDescriptors();

    This call returns a MethodDescriptor[] that contains a description of all of the methods contained by this Bean. The type of method descriptor returned by this call contains a complete list of all the public methods contained within the inheritance tree of this Bean. In order to access the actual method instances, we need to iterate through the methodDescriptionList and obtain the method by calling:

    methodRef = methodDescriptorList[i].getMethod();

    From each one of these values, we are able to build a Method[] list that can be displayed by the utility. This includes no constructor method information. To access the Bean constructor information, you must use reflection.

    Bean properties can be retrieved via PropertyDescriptors by calling:

    PropertyDescriptorList = bi.getPropertyDescriptors();

    This call returns a PropertyDescriptor[] that contains a description of all of the properties contained by this Bean. This includes name, readMethod, writeMethod, type, EditorClass, etc. Our utility uses this information to get the readMethod, writeMethod and property name via the PropertyDescriptor superclass (i.e., FeatureDescriptor) by calling:

    methodRef = PropertyDescriptorList[i].getReadMethod();
    methodRef = PropertyDescriptorList[i].getWriteMethod();
    propertyName = PropertyDescriptorList[i].getName();

    Bean events can be retrieved via EventSetDescriptors by calling:

    eventSetDescriptorList = bi.getEventSetDescriptors();

    This call returns an EventSetDescriptor[] that contains a description of all the methods associated with each event for this Bean. Our utility uses this information to get a Method[] for each one of the returned events in the eventSetDescriptorList. This is accomplished by calling:

    methodList = eventSetDescriptorList[i].getListenerMethods();

    This information is used to identify the methods associated to each one of the listener methods.

    Information concerning the interfaces implemented by a class can be accessed by calling:

    interfaceList = c.getInterfaces();

    This call returns a class[] that contains all the interfaces implemented by the local class. Notice that this call doesn't have a getDeclaredInterfaces() counterpart like the other methods.

    The output from the program for examining the events in the class, com.sun.swing.Jpanel is shown in Figure 5.

    Conclusion
    In this article, we took a look at the Reflection and Introspection APIs and used them to develop several useful utilities for Java development. In our next article, we will use the concepts and utilities introduced here to develop a new category of dynamically generated adapters called Dynamic Adapters.

    The traditional Adapter design pattern is defined as follows: Adapter: "Convert the interface of a class into another interface clients expect. Adapter lets classes work together that couldn't otherwise because of incompatible interfaces." [Design Patterns: Elements of Resuable Object-Oriented Software, Gamma et. al., Addison Wesley, 1995.]

    Adapters are used when the input and output interfaces are known at compile-time. Dynamic Adapters will allow a program to dynamically map the interfaces at runtime. We will examine these patterns in more detail in the next article.

  • More Stories By Ajit Sagar

    Ajit Sagar is Associate VP, Digital Transformation Practice at Infosys Limited. A seasoned IT executive with 20+ years experience across various facts of the industry including consulting, business development, architecture and design he is architecture consulting and delivery lead for Infosys's Digital Transformation practice. He was also the Founding Editor of XML Journal and Chief Editor of Java Developer's Journal.

    Comments (0)

    Share your thoughts on this story.

    Add your comment
    You must be signed in to add a comment. Sign-in | Register

    In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


    @ThingsExpo Stories
    In this strange new world where more and more power is drawn from business technology, companies are effectively straddling two paths on the road to innovation and transformation into digital enterprises. The first path is the heritage trail – with “legacy” technology forming the background. Here, extant technologies are transformed by core IT teams to provide more API-driven approaches. Legacy systems can restrict companies that are transitioning into digital enterprises. To truly become a lead...
    SYS-CON Events announced today that CAST Software will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. CAST was founded more than 25 years ago to make the invisible visible. Built around the idea that even the best analytics on the market still leave blind spots for technical teams looking to deliver better software and prevent outages, CAST provides the software intelligence that matter ...
    SYS-CON Events announced today that Daiya Industry will exhibit at the Japanese Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Ruby Development Inc. builds new services in short period of time and provides a continuous support of those services based on Ruby on Rails. For more information, please visit https://github.com/RubyDevInc.
    As businesses evolve, they need technology that is simple to help them succeed today and flexible enough to help them build for tomorrow. Chrome is fit for the workplace of the future — providing a secure, consistent user experience across a range of devices that can be used anywhere. In her session at 21st Cloud Expo, Vidya Nagarajan, a Senior Product Manager at Google, will take a look at various options as to how ChromeOS can be leveraged to interact with people on the devices, and formats th...
    SYS-CON Events announced today that Yuasa System will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Yuasa System is introducing a multi-purpose endurance testing system for flexible displays, OLED devices, flexible substrates, flat cables, and films in smartphones, wearables, automobiles, and healthcare.
    SYS-CON Events announced today that Taica will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Taica manufacturers Alpha-GEL brand silicone components and materials, which maintain outstanding performance over a wide temperature range -40C to +200C. For more information, visit http://www.taica.co.jp/english/.
    Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities – ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups. As a result, many firms employ new business models that place enormous impor...
    SYS-CON Events announced today that SourceForge has been named “Media Sponsor” of SYS-CON's 21st International Cloud Expo, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. SourceForge is the largest, most trusted destination for Open Source Software development, collaboration, discovery and download on the web serving over 32 million viewers, 150 million downloads and over 460,000 active development projects each and every month.
    SYS-CON Events announced today that Dasher Technologies will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Dasher Technologies, Inc. ® is a premier IT solution provider that delivers expert technical resources along with trusted account executives to architect and deliver complete IT solutions and services to help our clients execute their goals, plans and objectives. Since 1999, we'v...
    As popularity of the smart home is growing and continues to go mainstream, technological factors play a greater role. The IoT protocol houses the interoperability battery consumption, security, and configuration of a smart home device, and it can be difficult for companies to choose the right kind for their product. For both DIY and professionally installed smart homes, developers need to consider each of these elements for their product to be successful in the market and current smart homes.
    SYS-CON Events announced today that MIRAI Inc. will exhibit at the Japan External Trade Organization (JETRO) Pavilion at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 – Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. MIRAI Inc. are IT consultants from the public sector whose mission is to solve social issues by technology and innovation and to create a meaningful future for people.
    SYS-CON Events announced today that Massive Networks, that helps your business operate seamlessly with fast, reliable, and secure internet and network solutions, has been named "Exhibitor" of SYS-CON's 21st International Cloud Expo ®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. As a premier telecommunications provider, Massive Networks is headquartered out of Louisville, Colorado. With years of experience under their belt, their team of...
    SYS-CON Events announced today that TidalScale, a leading provider of systems and services, will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on Oct 31 - Nov 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. TidalScale has been involved in shaping the computing landscape. They've designed, developed and deployed some of the most important and successful systems and services in the history of the computing industry - internet, Ethernet, operating s...
    Coca-Cola’s Google powered digital signage system lays the groundwork for a more valuable connection between Coke and its customers. Digital signs pair software with high-resolution displays so that a message can be changed instantly based on what the operator wants to communicate or sell. In their Day 3 Keynote at 21st Cloud Expo, Greg Chambers, Global Group Director, Digital Innovation, Coca-Cola, and Vidya Nagarajan, a Senior Product Manager at Google, will discuss how from store operations...
    Widespread fragmentation is stalling the growth of the IIoT and making it difficult for partners to work together. The number of software platforms, apps, hardware and connectivity standards is creating paralysis among businesses that are afraid of being locked into a solution. EdgeX Foundry is unifying the community around a common IoT edge framework and an ecosystem of interoperable components.
    In a recent survey, Sumo Logic surveyed 1,500 customers who employ cloud services such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform (GCP). According to the survey, a quarter of the respondents have already deployed Docker containers and nearly as many (23 percent) are employing the AWS Lambda serverless computing framework. It’s clear: serverless is here to stay. The adoption does come with some needed changes, within both application development and operations. Tha...
    SYS-CON Events announced today that IBM has been named “Diamond Sponsor” of SYS-CON's 21st Cloud Expo, which will take place on October 31 through November 2nd 2017 at the Santa Clara Convention Center in Santa Clara, California.
    In his Opening Keynote at 21st Cloud Expo, John Considine, General Manager of IBM Cloud Infrastructure, will lead you through the exciting evolution of the cloud. He'll look at this major disruption from the perspective of technology, business models, and what this means for enterprises of all sizes. John Considine is General Manager of Cloud Infrastructure Services at IBM. In that role he is responsible for leading IBM’s public cloud infrastructure including strategy, development, and offering ...
    Infoblox delivers Actionable Network Intelligence to enterprise, government, and service provider customers around the world. They are the industry leader in DNS, DHCP, and IP address management, the category known as DDI. We empower thousands of organizations to control and secure their networks from the core-enabling them to increase efficiency and visibility, improve customer service, and meet compliance requirements.
    Join IBM November 1 at 21st Cloud Expo at the Santa Clara Convention Center in Santa Clara, CA, and learn how IBM Watson can bring cognitive services and AI to intelligent, unmanned systems. Cognitive analysis impacts today’s systems with unparalleled ability that were previously available only to manned, back-end operations. Thanks to cloud processing, IBM Watson can bring cognitive services and AI to intelligent, unmanned systems. Imagine a robot vacuum that becomes your personal assistant tha...