Welcome!

Java IoT Authors: Elizabeth White, Pat Romanski, Stackify Blog, Yeshim Deniz, Liz McMillan

Related Topics: Java IoT

Java IoT: Article

Reflection & Introspection: Objects Exposed

Reflection & Introspection: Objects Exposed

One of the salient aspects of the Java language is the control it gives to developers for dynamically generating and reusing code. This allows the language to offer Java programmers the ability to write code in which the actual behavior is determined at runtime. Of the eleven buzzwords used to define Java, this article is going to focus on the dynamic nature of the Java programming language.

One of the salient aspects of the Java language is the control it gives to developers for dynamically generating and reusing code. This allows the language to offer Java programmers the ability to write code in which the actual behavior is determined at runtime. Of the eleven buzzwords used to define Java, this article is going to focus on the dynamic nature of the Java programming language.Introspection Uses Reflection
Reflection and introspection are very closely related. Reflection is a low-level facility that allows the code to examine the internals of any class or object at runtime. Introspection builds on this facility and provides a more convenient interface for examining Beans. In fact, the relationship between reflection and introspection is very similar to the relationship between JavaBeans and other Java classes. JavaBeans are simply normal Java objects with certain design patterns enforced in their nomenclature. Introspection assumes these design patterns on the object that it is inspecting and uses low-level reflection to examine the object's internals.

The Reflection API
The Reflection API became a part of core Java with release 1.1 of the JDK. The API is defined across the following:

  • The new methods added to the java.lang.Class class in JDK 1.1
  • The java.lang.reflect package defined in JDK1.1

    The class java.lang.Class contains methods that return instances of classes/interfaces defined in the java.lang.reflect package. A detailed description of the API is beyond the scope of this article and can be found in any standard Java text. However, the classes that comprise the Reflection API are listed in Table 1.

    The Introspection API
    The Introspection API consists of several classes in the java.beans package. Again, a detailed description of the API is beyond the scope of this article and can be found in any standard Java text. The main classes in the Introspection API are listed in Table 2.

    The Costs of Usage
    Reflection and Introspection are powerful tools that contribute to the flexibility provided by the Java language. However, these APIs should be used only as needed and after taking into account the costs associated with their usage:

  • Reflection and Introspection method calls have a substantial performance overhead.
  • Using reflection makes the code much more complex and harder to understand than using direct method calls.
  • Errors in method invocation are discovered at runtime instead of being caught by the compiler.
  • The code becomes type-unsafe.

    The Reflection and Introspection APIs should be used only when other forms of object-oriented programming are not appropriate.

    The following examples demonstrate the use of Reflection and Introspection to develop some useful Java utilities.

    Cookie Factory
    Our first example illustrates the use of Reflection to build a utility that allows us to instantiate objects of types derived from a "Cookie" interface. The actual type of the object instantiated is determined by a String parameter, which contains the name of the actual class. The code for the example is shown in Listings 1and 2.

    Listing 1 defines the Cookie interface and the derived classes. The Cookie interface is simply a marker interface which is implemented by the classes FortuneCookie and MisFortuneCookie. Both these classes define a single static method which prints out a string and returns a new instance of the respective class.

    Listing 2 shows the CookieFactory class which is capable of producing objects derived from the "Cookie" interface. It defines a single method createCookie that takes a String parameter, className. The Class corresponding to this name is obtained from the Class class by calling

    c = Class.forName(className);

    Once we have the class, we need to obtain the method to be called on it. The name of the method is "newCookie." In this example, we are assuming that the name of the method is available at this point. The parameter types for the method are filled in an array of type Class and this is used to get the actual Method object as follows:

    method = c.getMethod("newCookie", pTypes);

    Once the Method object is available, the static method is invoked on the class after constructing an array of Objects that contains the actual parameter instances:

    cookie = (Cookie)(method.invoke(c, params));

    A simple tester for the class is provided in the main() method. This first constructs the CookieFactory and then creates instances of the FortuneCookie and MisFortuneCookie class. The output from the program is shown in Figure 3.

    An X-Ray Class
    Our second example illustrates the use of reflection to build a utility that allows us to view all the methods, constructors, fields, interfaces and inheritance for a supplied class. The class being X-rayed is specified by a String parameter which contains the name of the actual class. The code for the example is shown in Listing 4.

    In order for the X-ray class program to determine the methods, constructors, fields and interfaces contained in the requested class, it must instantiate an object of the class by calling:

    c = Class.forName(className);

    After instantiating the class, the utility determines the selected operation on that class based on a second user-supplied string parameter, which can have one of the following values:

    localMethods
    allMethods
    Constructors
    fields
    interface
    inheritance

    The local methods contained in the specified class may be found by calling:

    methodList = c.getDeclaredMethods();

    This call returns a Method[] that contains all the methods declared in the local class including private, protected and public. This call excludes inherited methods. A list of all the public methods, both inherited and local, may be obtained by calling:

    methodList = c.getMethods();

    Constructor methods are not included in the return Method[] of this call. Retrieving a list of constructors for a specific class can be accomplished by calling:

    constructorList = c.getDeclaredConstructors();

    This call returns a constructor[] that contains all of the private, protected and public constructors declared on the local class. A list that includes only the public constructors can be constructed by calling:

    constructorList = c.getConstructors();

    Class variables can be retrieved as Field[] information. To access a complete list of fields from a class including private, protected and public, we call:

    fieldList = c.getDeclaredFields();A list that includes only the public fields can be retrieved by calling:

    fieldList = c.getFields();

    Information concerning the interfaces implemented by a class can be accessed by calling:

    interfaceList = c.getInterfaces();

    This call returns a Class[] that contains all of the interfaces implemented by the local class. Notice that this call doesn't have a getDeclaredInterfaces() counterpart like the other methods.

    To access the inheritance information in the class, we get the name of each one of the superclasses in the inheritance tree. This is done in a while loop by calling:

    classRef = c.getSuperclass();

    We use this mechanism to return a class[] with all of the classes that participate in the extension of the local class. The output of the program for obtaining the inheritance hierarchy of the java.applet.Applet class is given in Figure 4.

    Notice that of the various methods presented on this section, the only method that recursively provided information contained in its inheritance tree was the c.getMethods() call. The other methods only provided information contained by the local class.

    An X-Ray Bean
    Our third example illustrates the use of Introspection to build a utility that allows us to view all the methods, properties and events for a supplied JavaBean class. The Bean being X-rayed is specified by a String parameter which contains the name of the actual Bean class. The code for the example is shown in Listing 3.

    In order for the X-ray Bean program to determine the methods, properties and events contained in the requested class, it must instantiate an object of the class by calling:

    c = Class.forName(className);

    After instantiating the class, the utility must access the BeanInfo for the instantiated Bean. BeanInfo data can be accessed via the Introspector class by calling:

    bi = Introspector.getBeanInfo(c);

    Next, the utility determines the selected operation on that class based on the second user-supplied parameter entered at the command line (i.e., methods, properties and events). The localMethods contained by the specified Bean can be found by calling:

    methodDescriptorList = bi.getMethodDescriptors();

    This call returns a MethodDescriptor[] that contains a description of all of the methods contained by this Bean. The type of method descriptor returned by this call contains a complete list of all the public methods contained within the inheritance tree of this Bean. In order to access the actual method instances, we need to iterate through the methodDescriptionList and obtain the method by calling:

    methodRef = methodDescriptorList[i].getMethod();

    From each one of these values, we are able to build a Method[] list that can be displayed by the utility. This includes no constructor method information. To access the Bean constructor information, you must use reflection.

    Bean properties can be retrieved via PropertyDescriptors by calling:

    PropertyDescriptorList = bi.getPropertyDescriptors();

    This call returns a PropertyDescriptor[] that contains a description of all of the properties contained by this Bean. This includes name, readMethod, writeMethod, type, EditorClass, etc. Our utility uses this information to get the readMethod, writeMethod and property name via the PropertyDescriptor superclass (i.e., FeatureDescriptor) by calling:

    methodRef = PropertyDescriptorList[i].getReadMethod();
    methodRef = PropertyDescriptorList[i].getWriteMethod();
    propertyName = PropertyDescriptorList[i].getName();

    Bean events can be retrieved via EventSetDescriptors by calling:

    eventSetDescriptorList = bi.getEventSetDescriptors();

    This call returns an EventSetDescriptor[] that contains a description of all the methods associated with each event for this Bean. Our utility uses this information to get a Method[] for each one of the returned events in the eventSetDescriptorList. This is accomplished by calling:

    methodList = eventSetDescriptorList[i].getListenerMethods();

    This information is used to identify the methods associated to each one of the listener methods.

    Information concerning the interfaces implemented by a class can be accessed by calling:

    interfaceList = c.getInterfaces();

    This call returns a class[] that contains all the interfaces implemented by the local class. Notice that this call doesn't have a getDeclaredInterfaces() counterpart like the other methods.

    The output from the program for examining the events in the class, com.sun.swing.Jpanel is shown in Figure 5.

    Conclusion
    In this article, we took a look at the Reflection and Introspection APIs and used them to develop several useful utilities for Java development. In our next article, we will use the concepts and utilities introduced here to develop a new category of dynamically generated adapters called Dynamic Adapters.

    The traditional Adapter design pattern is defined as follows: Adapter: "Convert the interface of a class into another interface clients expect. Adapter lets classes work together that couldn't otherwise because of incompatible interfaces." [Design Patterns: Elements of Resuable Object-Oriented Software, Gamma et. al., Addison Wesley, 1995.]

    Adapters are used when the input and output interfaces are known at compile-time. Dynamic Adapters will allow a program to dynamically map the interfaces at runtime. We will examine these patterns in more detail in the next article.

  • More Stories By Ajit Sagar

    Ajit Sagar is Associate VP, Digital Transformation Practice at Infosys Limited. A seasoned IT executive with 20+ years experience across various facts of the industry including consulting, business development, architecture and design he is architecture consulting and delivery lead for Infosys's Digital Transformation practice. He was also the Founding Editor of XML Journal and Chief Editor of Java Developer's Journal.

    Comments (0)

    Share your thoughts on this story.

    Add your comment
    You must be signed in to add a comment. Sign-in | Register

    In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


    @ThingsExpo Stories
    The current age of digital transformation means that IT organizations must adapt their toolset to cover all digital experiences, beyond just the end users’. Today’s businesses can no longer focus solely on the digital interactions they manage with employees or customers; they must now contend with non-traditional factors. Whether it's the power of brand to make or break a company, the need to monitor across all locations 24/7, or the ability to proactively resolve issues, companies must adapt to...
    With major technology companies and startups seriously embracing Cloud strategies, now is the perfect time to attend 21st Cloud Expo October 31 - November 2, 2017, at the Santa Clara Convention Center, CA, and June 12-14, 2018, at the Javits Center in New York City, NY, and learn what is going on, contribute to the discussions, and ensure that your enterprise is on the right path to Digital Transformation.
    Artificial intelligence, machine learning, neural networks. We’re in the midst of a wave of excitement around AI such as hasn’t been seen for a few decades. But those previous periods of inflated expectations led to troughs of disappointment. Will this time be different? Most likely. Applications of AI such as predictive analytics are already decreasing costs and improving reliability of industrial machinery. Furthermore, the funding and research going into AI now comes from a wide range of com...
    "When we talk about cloud without compromise what we're talking about is that when people think about 'I need the flexibility of the cloud' - it's the ability to create applications and run them in a cloud environment that's far more flexible,” explained Matthew Finnie, CTO of Interoute, in this SYS-CON.tv interview at 20th Cloud Expo, held June 6-8, 2017, at the Javits Center in New York City, NY.
    Internet of @ThingsExpo, taking place October 31 - November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA, is co-located with 21st Cloud Expo and will feature technical sessions from a rock star conference faculty and the leading industry players in the world. The Internet of Things (IoT) is the most profound change in personal and enterprise IT since the creation of the Worldwide Web more than 20 years ago. All major researchers estimate there will be tens of billions devic...
    SYS-CON Events announced today that MobiDev, a client-oriented software development company, will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place October 31-November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. MobiDev is a software company that develops and delivers turn-key mobile apps, websites, web services, and complex software systems for startups and enterprises. Since 2009 it has grown from a small group of passionate engineers and business...
    SYS-CON Events announced today that GrapeUp, the leading provider of rapid product development at the speed of business, will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place October 31-November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Grape Up is a software company, specialized in cloud native application development and professional services related to Cloud Foundry PaaS. With five expert teams that operate in various sectors of the market acr...
    SYS-CON Events announced today that Ayehu will exhibit at SYS-CON's 21st International Cloud Expo®, which will take place on October 31 - November 2, 2017 at the Santa Clara Convention Center in Santa Clara California. Ayehu provides IT Process Automation & Orchestration solutions for IT and Security professionals to identify and resolve critical incidents and enable rapid containment, eradication, and recovery from cyber security breaches. Ayehu provides customers greater control over IT infras...
    In this presentation, Striim CTO and founder Steve Wilkes will discuss practical strategies for counteracting fraud and cyberattacks by leveraging real-time streaming analytics. In his session at @ThingsExpo, Steve Wilkes, Founder and Chief Technology Officer at Striim, will provide a detailed look into leveraging streaming data management to correlate events in real time, and identify potential breaches across IoT and non-IoT systems throughout the enterprise. Strategies for processing massive ...
    SYS-CON Events announced today that Cloud Academy named "Bronze Sponsor" of 21st International Cloud Expo which will take place October 31 - November 2, 2017 at the Santa Clara Convention Center in Santa Clara, CA. Cloud Academy is the industry’s most innovative, vendor-neutral cloud technology training platform. Cloud Academy provides continuous learning solutions for individuals and enterprise teams for Amazon Web Services, Microsoft Azure, Google Cloud Platform, and the most popular cloud com...
    In his session at Cloud Expo, Alan Winters, an entertainment executive/TV producer turned serial entrepreneur, presented a success story of an entrepreneur who has both suffered through and benefited from offshore development across multiple businesses: The smart choice, or how to select the right offshore development partner Warning signs, or how to minimize chances of making the wrong choice Collaboration, or how to establish the most effective work processes Budget control, or how to ma...
    SYS-CON Events announced today that Enzu will exhibit at SYS-CON's 21st Int\ernational Cloud Expo®, which will take place October 31-November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. Enzu’s mission is to be the leading provider of enterprise cloud solutions worldwide. Enzu enables online businesses to use its IT infrastructure to their competitive advantage. By offering a suite of proven hosting and management services, Enzu wants companies to focus on the core of their ...
    We build IoT infrastructure products - when you have to integrate different devices, different systems and cloud you have to build an application to do that but we eliminate the need to build an application. Our products can integrate any device, any system, any cloud regardless of protocol," explained Peter Jung, Chief Product Officer at Pulzze Systems, in this SYS-CON.tv interview at @ThingsExpo, held November 1-3, 2016, at the Santa Clara Convention Center in Santa Clara, CA
    SYS-CON Events announced today that IBM has been named “Diamond Sponsor” of SYS-CON's 21st Cloud Expo, which will take place on October 31 through November 2nd 2017 at the Santa Clara Convention Center in Santa Clara, California.
    SYS-CON Events announced today that CA Technologies has been named "Platinum Sponsor" of SYS-CON's 21st International Cloud Expo®, which will take place October 31-November 2, 2017, at the Santa Clara Convention Center in Santa Clara, CA. CA Technologies helps customers succeed in a future where every business - from apparel to energy - is being rewritten by software. From planning to development to management to security, CA creates software that fuels transformation for companies in the applic...
    Amazon started as an online bookseller 20 years ago. Since then, it has evolved into a technology juggernaut that has disrupted multiple markets and industries and touches many aspects of our lives. It is a relentless technology and business model innovator driving disruption throughout numerous ecosystems. Amazon’s AWS revenues alone are approaching $16B a year making it one of the largest IT companies in the world. With dominant offerings in Cloud, IoT, eCommerce, Big Data, AI, Digital Assista...
    Multiple data types are pouring into IoT deployments. Data is coming in small packages as well as enormous files and data streams of many sizes. Widespread use of mobile devices adds to the total. In this power panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists looked at the tools and environments that are being put to use in IoT deployments, as well as the team skills a modern enterprise IT shop needs to keep things running, get a handle on all this data, and deliver...
    In his session at @ThingsExpo, Eric Lachapelle, CEO of the Professional Evaluation and Certification Board (PECB), provided an overview of various initiatives to certify the security of connected devices and future trends in ensuring public trust of IoT. Eric Lachapelle is the Chief Executive Officer of the Professional Evaluation and Certification Board (PECB), an international certification body. His role is to help companies and individuals to achieve professional, accredited and worldwide re...
    With the introduction of IoT and Smart Living in every aspect of our lives, one question has become relevant: What are the security implications? To answer this, first we have to look and explore the security models of the technologies that IoT is founded upon. In his session at @ThingsExpo, Nevi Kaja, a Research Engineer at Ford Motor Company, discussed some of the security challenges of the IoT infrastructure and related how these aspects impact Smart Living. The material was delivered interac...
    IoT solutions exploit operational data generated by Internet-connected smart “things” for the purpose of gaining operational insight and producing “better outcomes” (for example, create new business models, eliminate unscheduled maintenance, etc.). The explosive proliferation of IoT solutions will result in an exponential growth in the volume of IoT data, precipitating significant Information Governance issues: who owns the IoT data, what are the rights/duties of IoT solutions adopters towards t...