Welcome!

Java Authors: Sematext Blog , Elizabeth White, Noel Wurst, Michael Bushong, Liz McMillan

Related Topics: Java

Java: Article

Reflection & Introspection: Objects Exposed

Reflection & Introspection: Objects Exposed

One of the salient aspects of the Java language is the control it gives to developers for dynamically generating and reusing code. This allows the language to offer Java programmers the ability to write code in which the actual behavior is determined at runtime. Of the eleven buzzwords used to define Java, this article is going to focus on the dynamic nature of the Java programming language.

One of the salient aspects of the Java language is the control it gives to developers for dynamically generating and reusing code. This allows the language to offer Java programmers the ability to write code in which the actual behavior is determined at runtime. Of the eleven buzzwords used to define Java, this article is going to focus on the dynamic nature of the Java programming language.Introspection Uses Reflection
Reflection and introspection are very closely related. Reflection is a low-level facility that allows the code to examine the internals of any class or object at runtime. Introspection builds on this facility and provides a more convenient interface for examining Beans. In fact, the relationship between reflection and introspection is very similar to the relationship between JavaBeans and other Java classes. JavaBeans are simply normal Java objects with certain design patterns enforced in their nomenclature. Introspection assumes these design patterns on the object that it is inspecting and uses low-level reflection to examine the object's internals.

The Reflection API
The Reflection API became a part of core Java with release 1.1 of the JDK. The API is defined across the following:

  • The new methods added to the java.lang.Class class in JDK 1.1
  • The java.lang.reflect package defined in JDK1.1

    The class java.lang.Class contains methods that return instances of classes/interfaces defined in the java.lang.reflect package. A detailed description of the API is beyond the scope of this article and can be found in any standard Java text. However, the classes that comprise the Reflection API are listed in Table 1.

    The Introspection API
    The Introspection API consists of several classes in the java.beans package. Again, a detailed description of the API is beyond the scope of this article and can be found in any standard Java text. The main classes in the Introspection API are listed in Table 2.

    The Costs of Usage
    Reflection and Introspection are powerful tools that contribute to the flexibility provided by the Java language. However, these APIs should be used only as needed and after taking into account the costs associated with their usage:

  • Reflection and Introspection method calls have a substantial performance overhead.
  • Using reflection makes the code much more complex and harder to understand than using direct method calls.
  • Errors in method invocation are discovered at runtime instead of being caught by the compiler.
  • The code becomes type-unsafe.

    The Reflection and Introspection APIs should be used only when other forms of object-oriented programming are not appropriate.

    The following examples demonstrate the use of Reflection and Introspection to develop some useful Java utilities.

    Cookie Factory
    Our first example illustrates the use of Reflection to build a utility that allows us to instantiate objects of types derived from a "Cookie" interface. The actual type of the object instantiated is determined by a String parameter, which contains the name of the actual class. The code for the example is shown in Listings 1and 2.

    Listing 1 defines the Cookie interface and the derived classes. The Cookie interface is simply a marker interface which is implemented by the classes FortuneCookie and MisFortuneCookie. Both these classes define a single static method which prints out a string and returns a new instance of the respective class.

    Listing 2 shows the CookieFactory class which is capable of producing objects derived from the "Cookie" interface. It defines a single method createCookie that takes a String parameter, className. The Class corresponding to this name is obtained from the Class class by calling

    c = Class.forName(className);

    Once we have the class, we need to obtain the method to be called on it. The name of the method is "newCookie." In this example, we are assuming that the name of the method is available at this point. The parameter types for the method are filled in an array of type Class and this is used to get the actual Method object as follows:

    method = c.getMethod("newCookie", pTypes);

    Once the Method object is available, the static method is invoked on the class after constructing an array of Objects that contains the actual parameter instances:

    cookie = (Cookie)(method.invoke(c, params));

    A simple tester for the class is provided in the main() method. This first constructs the CookieFactory and then creates instances of the FortuneCookie and MisFortuneCookie class. The output from the program is shown in Figure 3.

    An X-Ray Class
    Our second example illustrates the use of reflection to build a utility that allows us to view all the methods, constructors, fields, interfaces and inheritance for a supplied class. The class being X-rayed is specified by a String parameter which contains the name of the actual class. The code for the example is shown in Listing 4.

    In order for the X-ray class program to determine the methods, constructors, fields and interfaces contained in the requested class, it must instantiate an object of the class by calling:

    c = Class.forName(className);

    After instantiating the class, the utility determines the selected operation on that class based on a second user-supplied string parameter, which can have one of the following values:

    localMethods
    allMethods
    Constructors
    fields
    interface
    inheritance

    The local methods contained in the specified class may be found by calling:

    methodList = c.getDeclaredMethods();

    This call returns a Method[] that contains all the methods declared in the local class including private, protected and public. This call excludes inherited methods. A list of all the public methods, both inherited and local, may be obtained by calling:

    methodList = c.getMethods();

    Constructor methods are not included in the return Method[] of this call. Retrieving a list of constructors for a specific class can be accomplished by calling:

    constructorList = c.getDeclaredConstructors();

    This call returns a constructor[] that contains all of the private, protected and public constructors declared on the local class. A list that includes only the public constructors can be constructed by calling:

    constructorList = c.getConstructors();

    Class variables can be retrieved as Field[] information. To access a complete list of fields from a class including private, protected and public, we call:

    fieldList = c.getDeclaredFields();A list that includes only the public fields can be retrieved by calling:

    fieldList = c.getFields();

    Information concerning the interfaces implemented by a class can be accessed by calling:

    interfaceList = c.getInterfaces();

    This call returns a Class[] that contains all of the interfaces implemented by the local class. Notice that this call doesn't have a getDeclaredInterfaces() counterpart like the other methods.

    To access the inheritance information in the class, we get the name of each one of the superclasses in the inheritance tree. This is done in a while loop by calling:

    classRef = c.getSuperclass();

    We use this mechanism to return a class[] with all of the classes that participate in the extension of the local class. The output of the program for obtaining the inheritance hierarchy of the java.applet.Applet class is given in Figure 4.

    Notice that of the various methods presented on this section, the only method that recursively provided information contained in its inheritance tree was the c.getMethods() call. The other methods only provided information contained by the local class.

    An X-Ray Bean
    Our third example illustrates the use of Introspection to build a utility that allows us to view all the methods, properties and events for a supplied JavaBean class. The Bean being X-rayed is specified by a String parameter which contains the name of the actual Bean class. The code for the example is shown in Listing 3.

    In order for the X-ray Bean program to determine the methods, properties and events contained in the requested class, it must instantiate an object of the class by calling:

    c = Class.forName(className);

    After instantiating the class, the utility must access the BeanInfo for the instantiated Bean. BeanInfo data can be accessed via the Introspector class by calling:

    bi = Introspector.getBeanInfo(c);

    Next, the utility determines the selected operation on that class based on the second user-supplied parameter entered at the command line (i.e., methods, properties and events). The localMethods contained by the specified Bean can be found by calling:

    methodDescriptorList = bi.getMethodDescriptors();

    This call returns a MethodDescriptor[] that contains a description of all of the methods contained by this Bean. The type of method descriptor returned by this call contains a complete list of all the public methods contained within the inheritance tree of this Bean. In order to access the actual method instances, we need to iterate through the methodDescriptionList and obtain the method by calling:

    methodRef = methodDescriptorList[i].getMethod();

    From each one of these values, we are able to build a Method[] list that can be displayed by the utility. This includes no constructor method information. To access the Bean constructor information, you must use reflection.

    Bean properties can be retrieved via PropertyDescriptors by calling:

    PropertyDescriptorList = bi.getPropertyDescriptors();

    This call returns a PropertyDescriptor[] that contains a description of all of the properties contained by this Bean. This includes name, readMethod, writeMethod, type, EditorClass, etc. Our utility uses this information to get the readMethod, writeMethod and property name via the PropertyDescriptor superclass (i.e., FeatureDescriptor) by calling:

    methodRef = PropertyDescriptorList[i].getReadMethod();
    methodRef = PropertyDescriptorList[i].getWriteMethod();
    propertyName = PropertyDescriptorList[i].getName();

    Bean events can be retrieved via EventSetDescriptors by calling:

    eventSetDescriptorList = bi.getEventSetDescriptors();

    This call returns an EventSetDescriptor[] that contains a description of all the methods associated with each event for this Bean. Our utility uses this information to get a Method[] for each one of the returned events in the eventSetDescriptorList. This is accomplished by calling:

    methodList = eventSetDescriptorList[i].getListenerMethods();

    This information is used to identify the methods associated to each one of the listener methods.

    Information concerning the interfaces implemented by a class can be accessed by calling:

    interfaceList = c.getInterfaces();

    This call returns a class[] that contains all the interfaces implemented by the local class. Notice that this call doesn't have a getDeclaredInterfaces() counterpart like the other methods.

    The output from the program for examining the events in the class, com.sun.swing.Jpanel is shown in Figure 5.

    Conclusion
    In this article, we took a look at the Reflection and Introspection APIs and used them to develop several useful utilities for Java development. In our next article, we will use the concepts and utilities introduced here to develop a new category of dynamically generated adapters called Dynamic Adapters.

    The traditional Adapter design pattern is defined as follows: Adapter: "Convert the interface of a class into another interface clients expect. Adapter lets classes work together that couldn't otherwise because of incompatible interfaces." [Design Patterns: Elements of Resuable Object-Oriented Software, Gamma et. al., Addison Wesley, 1995.]

    Adapters are used when the input and output interfaces are known at compile-time. Dynamic Adapters will allow a program to dynamically map the interfaces at runtime. We will examine these patterns in more detail in the next article.

  • More Stories By Ajit Sagar

    Ajit Sagar is Associate VP, Digital Transformation Practice at Infosys Limited. A seasoned IT executive with 20+ years experience across various facts of the industry including consulting, business development, architecture and design he is architecture consulting and delivery lead for Infosys's Digital Transformation practice. He was also the Founding Editor of XML Journal and Chief Editor of Java Developer's Journal.

    Comments (0)

    Share your thoughts on this story.

    Add your comment
    You must be signed in to add a comment. Sign-in | Register

    In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


    @ThingsExpo Stories
    The BPM world is going through some evolution or changes where traditional business process management solutions really have nowhere to go in terms of development of the road map. In this demo at 15th Cloud Expo, Kyle Hansen, Director of Professional Services at AgilePoint, shows AgilePoint’s unique approach to dealing with this market circumstance by developing a rapid application composition or development framework.

    ARMONK, N.Y., Nov. 20, 2014 /PRNewswire/ --  IBM (NYSE: IBM) today announced that it is bringing a greater level of control, security and flexibility to cloud-based application development and delivery with a single-tenant version of Bluemix, IBM's platform-as-a-service. The new platform enables developers to build ap...

    "BSQUARE is in the business of selling software solutions for smart connected devices. It's obvious that IoT has moved from being a technology to being a fundamental part of business, and in the last 18 months people have said let's figure out how to do it and let's put some focus on it, " explained Dave Wagstaff, VP & Chief Architect, at BSQUARE Corporation, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4-6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
    The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo (http://www.CloudComputingExpo.com), moderated by Ashar Baig, Research Director, Cloud, at Gigaom Research, Nate Gordon, Director of T...
    The Internet of Things is not new. Historically, smart businesses have used its basic concept of leveraging data to drive better decision making and have capitalized on those insights to realize additional revenue opportunities. So, what has changed to make the Internet of Things one of the hottest topics in tech? In his session at @ThingsExpo, Chris Gray, Director, Embedded and Internet of Things, discussed the underlying factors that are driving the economics of intelligent systems. Discover how hardware commoditization, the ubiquitous nature of connectivity, and the emergence of Big Data a...
    SYS-CON Events announced today that Windstream, a leading provider of advanced network and cloud communications, has been named “Silver Sponsor” of SYS-CON's 16th International Cloud Expo®, which will take place on June 9–11, 2015, at the Javits Center in New York, NY. Windstream (Nasdaq: WIN), a FORTUNE 500 and S&P 500 company, is a leading provider of advanced network communications, including cloud computing and managed services, to businesses nationwide. The company also offers broadband, phone and digital TV services to consumers primarily in rural areas.
    “In the past year we've seen a lot of stabilization of WebRTC. You can now use it in production with a far greater degree of certainty. A lot of the real developments in the past year have been in things like the data channel, which will enable a whole new type of application," explained Peter Dunkley, Technical Director at Acision, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
    SYS-CON Events announced today that IDenticard will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. IDenticard™ is the security division of Brady Corp (NYSE: BRC), a $1.5 billion manufacturer of identification products. We have small-company values with the strength and stability of a major corporation. IDenticard offers local sales, support and service to our customers across the United States and Canada. Our partner network encompasses some 300 of the world's leading systems integrators and security s...
    DevOps Summit 2015 New York, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that it is now accepting Keynote Proposals. The widespread success of cloud computing is driving the DevOps revolution in enterprise IT. Now as never before, development teams must communicate and collaborate in a dynamic, 24/7/365 environment. There is no time to wait for long development cycles that produce software that is obsolete at launch. DevOps may be disruptive, but it is essential.
    "People are a lot more knowledgeable about APIs now. There are two types of people who work with APIs - IT people who want to use APIs for something internal and the product managers who want to do something outside APIs for people to connect to them," explained Roberto Medrano, Executive Vice President at SOA Software, in this SYS-CON.tv interview at Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
    Nigeria has the largest economy in Africa, at more than US$500 billion, and ranks 23rd in the world. A recent re-evaluation of Nigeria's true economic size doubled the previous estimate, and brought it well ahead of South Africa, which is a member (unlike Nigeria) of the G20 club for political as well as economic reasons. Nigeria's economy can be said to be quite diverse from one point of view, but heavily dependent on oil and gas at the same time. Oil and natural gas account for about 15% of Nigera's overall economy, but traditionally represent more than 90% of the country's exports and as...
    The Internet of Things is a misnomer. That implies that everything is on the Internet, and that simply should not be - especially for things that are blurring the line between medical devices that stimulate like a pacemaker and quantified self-sensors like a pedometer or pulse tracker. The mesh of things that we manage must be segmented into zones of trust for sensing data, transmitting data, receiving command and control administrative changes, and peer-to-peer mesh messaging. In his session at @ThingsExpo, Ryan Bagnulo, Solution Architect / Software Engineer at SOA Software, focused on desi...
    "At our booth we are showing how to provide trust in the Internet of Things. Trust is where everything starts to become secure and trustworthy. Now with the scaling of the Internet of Things it becomes an interesting question – I've heard numbers from 200 billion devices next year up to a trillion in the next 10 to 15 years," explained Johannes Lintzen, Vice President of Sales at Utimaco, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
    "For over 25 years we have been working with a lot of enterprise customers and we have seen how companies create applications. And now that we have moved to cloud computing, mobile, social and the Internet of Things, we see that the market needs a new way of creating applications," stated Jesse Shiah, CEO, President and Co-Founder of AgilePoint Inc., in this SYS-CON.tv interview at 15th Cloud Expo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
    SYS-CON Events announced today that Gridstore™, the leader in hyper-converged infrastructure purpose-built to optimize Microsoft workloads, will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Gridstore™ is the leader in hyper-converged infrastructure purpose-built for Microsoft workloads and designed to accelerate applications in virtualized environments. Gridstore’s hyper-converged infrastructure is the industry’s first all flash version of HyperConverged Appliances that include both compute and storag...
    Today’s enterprise is being driven by disruptive competitive and human capital requirements to provide enterprise application access through not only desktops, but also mobile devices. To retrofit existing programs across all these devices using traditional programming methods is very costly and time consuming – often prohibitively so. In his session at @ThingsExpo, Jesse Shiah, CEO, President, and Co-Founder of AgilePoint Inc., discussed how you can create applications that run on all mobile devices as well as laptops and desktops using a visual drag-and-drop application – and eForms-buildi...
    We certainly live in interesting technological times. And no more interesting than the current competing IoT standards for connectivity. Various standards bodies, approaches, and ecosystems are vying for mindshare and positioning for a competitive edge. It is clear that when the dust settles, we will have new protocols, evolved protocols, that will change the way we interact with devices and infrastructure. We will also have evolved web protocols, like HTTP/2, that will be changing the very core of our infrastructures. At the same time, we have old approaches made new again like micro-services...
    Code Halos - aka "digital fingerprints" - are the key organizing principle to understand a) how dumb things become smart and b) how to monetize this dynamic. In his session at @ThingsExpo, Robert Brown, AVP, Center for the Future of Work at Cognizant Technology Solutions, outlined research, analysis and recommendations from his recently published book on this phenomena on the way leading edge organizations like GE and Disney are unlocking the Internet of Things opportunity and what steps your organization should be taking to position itself for the next platform of digital competition.
    The 3rd International Internet of @ThingsExpo, co-located with the 16th International Cloud Expo - to be held June 9-11, 2015, at the Javits Center in New York City, NY - announces that its Call for Papers is now open. The Internet of Things (IoT) is the biggest idea since the creation of the Worldwide Web more than 20 years ago.
    As the Internet of Things unfolds, mobile and wearable devices are blurring the line between physical and digital, integrating ever more closely with our interests, our routines, our daily lives. Contextual computing and smart, sensor-equipped spaces bring the potential to walk through a world that recognizes us and responds accordingly. We become continuous transmitters and receivers of data. In his session at @ThingsExpo, Andrew Bolwell, Director of Innovation for HP's Printing and Personal Systems Group, discussed how key attributes of mobile technology – touch input, sensors, social, and ...