Click here to close now.

Welcome!

Java Authors: Pat Romanski, Sematext Blog, Liz McMillan, Elizabeth White, Plutora Blog

Related Topics: Java

Java: Article

UniqueID Generator: A Pattern for Primary Key Generation

UniqueID Generator: A Pattern for Primary Key Generation

Several patterns exist for generating primary keys for your EJB application. This month I'll provide a pattern for generating PKs that's scalable, generic, and portable.

My format for defining the pattern will follow the catalogued layout presented in the Gang of Four book, Design Patterns: Elements of Reusable Object-Oriented Software.

Pattern:
UniqueID Generator

Intent:
Generate unique IDs for persistent objects in an EJB application

Also Known As:
PID (Persistent ID) Factory
GUID (Globally UniqueID) Manager

Motivation
Enterprise JavaBeans is a server-side component model that targets the specific business domain of online transaction processing (OLTP) applications. OLTP applications generally have the need to store information persistently. The data records or objects for each transaction require unique identifiers to allow them to be stored and retrieved accurately. Thus there's a need to generate unique identifiers for the data involved in an EJB transaction processing system.

For the purposes of this pattern, I'm assuming a relational database is used as the data store rather than an object database, which would provide its own ID generator. A relational database table typically has a primary key column that's indexed to prevent duplicate IDs, which would lead to data integrity problems. Thus each row stored in the table is uniquely identifiable. For instance, in EJB the return value from the call to myHome.findByPrimaryKey is a single entity bean, not multiple entities!

There are numerous ways to generate unique IDs in a Java application. Let's review some approaches before discussing the UniqueID generator pattern presented in this article.

System.currentTimeMillis()
An easy way to generate unique IDs is to utilize the System.currentTimeMillis() method to get the current time in milliseconds and use it as your ID. Although it's an easy way to start creating applications, this approach has implications across high-volume applications. A high-volume OLTP application may perform several calls to System.currentTimeMillis() at the same time, resulting in the generation of duplicate IDs. Thus the generator must perform some sort of synchronization on ID requests. Typically, this is done with a wrapper object that uses the synchronized modifier to queue threads accessing it.

Next, you ask, "What about synchronization across multiple JVMs?" Certainly a clustered-server, multi-JVM architecture will be the norm for an enterprise application, but a clustered application poses two problems for this approach toward generating unique IDs:

  1. The system time on each machine may be different. Thus, in a multi-JVM architecture, calls to System.currentTimeMillis() can lead to duplicate values.
  2. The Java synchronize operator doesn't work across multiple JVMs, so even if the system times were equal, simultaneous calls to different machines could still result in duplicate IDs.

EntityBean Key Generator
This approach uses an entity bean to select the next value from a relational database table, which holds the latest value for unique ID generation. An entity bean can encapsulate the SQL, which it executes in a generic fashion by loading in a bean environment property containing a SQL string for each type of database. For instance, in Oracle the dual table should automatically return a sequence value. The SQL statement might look something like this:

"select mysequence.nextval from dual"

Oracle sequences are a proprietary feature and increment the value automatically for the caller by a specified increment count. Other databases that don't have this feature must increment a next ID field and select it in one call. Stored procedures are a common cure for the need to execute multiple database operations within a single request. To get the same ID generation capabilities from Microsoft SQL Server, a stored procedure could be called that both returns a value and increments it for the next caller. Since the stored procedure performs its work inside a transaction in one database request, it eliminates a "window" of opportunity when simultaneous calls for another ID get the same row and attempt to update the value.

Thus our entity bean key generator executes SQL, which it retrieved generically from its bean environment property and executed on the database. However, there are some drawbacks to this approach:

  • Each call to get another ID is a remote method invocation, which can create unwanted chatter depending on where the entity bean is deployed in your system.
  • Some might argue that entity beans are for business entities rather than utilitarian functionality like generating IDs for business entities.
  • Few application servers provide synchronized caching across a cluster. Thus the ability to cache a set of IDs, improving ID generation by preventing database operations, is negated when the application is clustered.

A more scalable approach to ID generation that provides both local caching and guaranteed unique IDs is a singleton object that hands out IDs from its local cache (see Figure 1). Each time the cache of the singleton object is depleted, it gets a set of IDs representing the next available IDs for the application. The singleton fetches IDs from a stateless session bean that accesses the database in a portable manner, allowing it to interact with any database.

Applicability
Use UniqueID Generator:

  1. To return a unique identifier for object and/or database row identity
  2. To cache sets of IDs across multiple JVMs for scalable ID generation
  3. To abstract database implementations from the core ID generation classes

Structure
Participants

  • Singleton: Acts as the wrapper of the UniqueIDEJB and caches sets of unique IDs to prevent chatty remote invocations and database operations
  • UniqueIDEJB: Component made up of UniqueID (remote interface) and UniqueIDHome (home interface); performs generic SQL to fetch a set of IDs from the database and return them to the singleton client

    Collaborations

  • Singleton: Calls UniqueIDEJB component to fetch a set of IDs; set is cached locally and a new set is fetched when the maximum is surpassed

Consequences
The UniqueID generator has several key benefits and some limitations:

  1. Limited remote method invocations and database operations: The UniqueID generator's singleton object caches a set of IDs that are depleted before another request is made to the UniqueIDEJB. This limits the number of remote method invocations on the EJB and the number of hits the database must handle to generate new IDs.
  2. Guaranteed UniqueIDs: The UniqueID generator pattern guarantees unique identifiers for your objects/data across an n-tiered solution. If a set of IDs is requested from multiple JVMs at the same time, the transaction isolation of the UniqueIDEJB and/or database layer will automatically queue multiple requests to ensure that only one singleton's request for an ID set is processed at a time.
  3. Portable across EJB servers: The pattern represents a component that's portable across EJB servers. It's a session bean, and session beans have been mandatory in the specification since its inception, whereas any EJB server still not up to the 1.1 version of the specification wouldn't be able to utilize an entity bean-based pattern.

  1. Portable across database servers: The implementation of the pattern really determines its portability, but the pattern itself allows for database-specific SQL to be loaded generically from the EJB's environment so that no code changes are required to deploy it against disparate databases.
  2. Singleton knows nothing about the "incrementBy" value: The singleton object knows nothing about how many IDs are returned in a set. This is controlled at the UniqueIDEJB level by an environment property. To change the incrementBy value, simply redeploy the EJB with a hot-deploy mechanism to avoid downtime and the increment will be changed to the new value without repercussions on the rest of the application.
  3. ID gaps: Gaps in IDs will occur with this solution. For example, if a set of 50 IDs is retrieved and the server crashes midway, 25 IDs would be lost. My recommendation is to increment only by one until ready for production, then set the UniqueIDEJB's incrementBy environment property to be sufficient for your application's load. This prevents wasting IDs in development and test.
  4. Support for other data types: The structure section's class diagram shows a long data type used for IDs, yet this could be any data type your application requires. However, the UniqueID generator pattern would have to be extended to account for different ID data types in a single application. For instance, if your application mixed doubles, strings, longs, and ints as keys, the singleton would have to be extended.

Implementation
Consider the following issues when implementing a generic, portable UniqueID generator pattern:

  • Determining incrementBy for your application: The amount of IDs contained in each ID set (and subsequently cached in the JVM) should be determined based on the number of users attempting "insert" transactions per JVM. Thus, if your incrementBy is 50 on a single J2EE server, set it to approximately 25 if you cluster two servers. Also, set incrementBy to a low number, even 1, for development and testing. As with any tunable parameter, metrics gathered from stress testing your application should ultimately drive your settings.
  • Ensure portability across EJB servers: When communicating from the UniqueIDEJB to the database, don't use proprietary logic to obtain a connection from a connection pool. Use data sources looked up through JNDI instead.
  • Ensuring portability across databases: There are a few ways to ensure that your code to fetch a set of IDs is portable. One way is to store the SQL that will be executed in the EJB's environment. The SQL is set in the deployment descriptor, which allows it to be modified during deployment rather than having to modify the codebase. Another option is to use data access objects (DAOs) to contain the database-specific SQL code. Last, your UniqueIDEJB component couldn't take advantage of database-specific sequence generators. Your component's implementation should create the table at runtime if it doesn't exist already. This approach isn't recommended, but it's an alternative nonetheless.

  • Generating different IDs for different tables (classes): To generate a different ID for different tables, each class in the pattern would have to change its interface to take a "sequence" parameter, which indicates which class you want to get the next ID for and is forwarded throughout the pattern to the JDBC call against the database.
  • Generating IDs shouldn't rely on a business transaction outcome: The UniqueIDEJB should create its own new transaction when getting an ID set. Incrementing the database to the "next ID value" shouldn't rely on whether or not the business transaction currently executing in your application succeeds or fails.
  • Business transactions rely on generated ID success: An error fetching an ID set from the UniqueIDEJB will cause a business transaction to fail. Don't mix different approaches to generating unique IDs when one fails. For instance, let's say your application uses the System.currentTimeMillis() approach to key generation if the first approach, calling UniqueIDEJB, fails. This provides an extra layer of fault tolerance to your application, but you could encounter duplicate IDs! If your database counter is near the number generated by the System.currentTimeMillis(), you'll have problems.

Sample Code
The code in Listing 1 shows how to implement the singleton to cache the ID set, fetch a new set, and handle failures when calling the UniqueIDEJB.

Summary
This month I provided an EJB pattern to a common problem in the OLTP world, generating unique IDs. While there are variations of the pattern, the UniqueID generator overcomes many scalability and flexibility issues where other patterns fall short, such as local ID caching, limiting remote method invocations, and portability. I hope this pattern is helpful for your EJB engagement. For other EJB patterns see www.theServerSide.com. And let me know if you're interested in JDJ featuring more patterns in the future.

More Stories By Jason Westra

Jason Westra is the CTO of Verge Technologies Group, Inc. (www.vergecorp.com). Verge is a Boulder, CO based firm specializing in eBusiness solutions with Enterprise JavaBeans.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


@ThingsExpo Stories
PubNub on Monday has announced that it is partnering with IBM to bring its sophisticated real-time data streaming and messaging capabilities to Bluemix, IBM’s cloud development platform. “Today’s app and connected devices require an always-on connection, but building a secure, scalable solution from the ground up is time consuming, resource intensive, and error-prone,” said Todd Greene, CEO of PubNub. “PubNub enables web, mobile and IoT developers building apps on IBM Bluemix to quickly add scalable realtime functionality with minimal effort and cost.”
The major cloud platforms defy a simple, side-by-side analysis. Each of the major IaaS public-cloud platforms offers their own unique strengths and functionality. Options for on-site private cloud are diverse as well, and must be designed and deployed while taking existing legacy architecture and infrastructure into account. Then the reality is that most enterprises are embarking on a hybrid cloud strategy and programs. In this Power Panel at 15th Cloud Expo (http://www.CloudComputingExpo.com), moderated by Ashar Baig, Research Director, Cloud, at Gigaom Research, Nate Gordon, Director of T...
“In the past year we've seen a lot of stabilization of WebRTC. You can now use it in production with a far greater degree of certainty. A lot of the real developments in the past year have been in things like the data channel, which will enable a whole new type of application," explained Peter Dunkley, Technical Director at Acision, in this SYS-CON.tv interview at @ThingsExpo, held Nov 4–6, 2014, at the Santa Clara Convention Center in Santa Clara, CA.
SYS-CON Events announced today that Intelligent Systems Services will exhibit at SYS-CON's 16th International Cloud Expo®, which will take place on June 9-11, 2015, at the Javits Center in New York City, NY. Established in 1994, Intelligent Systems Services Inc. is located near Washington, DC, with representatives and partners nationwide. ISS’s well-established track record is based on the continuous pursuit of excellence in designing, implementing and supporting nationwide clients’ mission-critical systems. ISS has completed many successful projects in Healthcare, Commercial, Manufacturing, ...
DevOps tends to focus on the relationship between Dev and Ops, putting an emphasis on the ops and application infrastructure. But that’s changing with microservices architectures. In her session at DevOps Summit, Lori MacVittie, Evangelist for F5 Networks, will focus on how microservices are changing the underlying architectures needed to scale, secure and deliver applications based on highly distributed (micro) services and why that means an expansion into “the network” for DevOps.
When it comes to the Internet of Things, hooking up will get you only so far. If you want customers to commit, you need to go beyond simply connecting products. You need to use the devices themselves to transform how you engage with every customer and how you manage the entire product lifecycle. In his session at @ThingsExpo, Sean Lorenz, Technical Product Manager for Xively at LogMeIn, will show how “product relationship management” can help you leverage your connected devices and the data they generate about customer usage and product performance to deliver extremely compelling and reliabl...
With several hundred implementations of IoT-enabled solutions in the past 12 months alone, this session will focus on experience over the art of the possible. Many can only imagine the most advanced telematics platform ever deployed, supporting millions of customers, producing tens of thousands events or GBs per trip, and hundreds of TBs per month. With the ability to support a billion sensor events per second, over 30PB of warm data for analytics, and hundreds of PBs for an data analytics archive, in his session at @ThingsExpo, Jim Kaskade, Vice President and General Manager, Big Data & Ana...
For years, we’ve relied too heavily on individual network functions or simplistic cloud controllers. However, they are no longer enough for today’s modern cloud data center. Businesses need a comprehensive platform architecture in order to deliver a complete networking suite for IoT environment based on OpenStack. In his session at @ThingsExpo, Dhiraj Sehgal from PLUMgrid will discuss what a holistic networking solution should really entail, and how to build a complete platform that is scalable, secure, agile and automated.
We’re no longer looking to the future for the IoT wave. It’s no longer a distant dream but a reality that has arrived. It’s now time to make sure the industry is in alignment to meet the IoT growing pains – cooperate and collaborate as well as innovate. In his session at @ThingsExpo, Jim Hunter, Chief Scientist & Technology Evangelist at Greenwave Systems, will examine the key ingredients to IoT success and identify solutions to challenges the industry is facing. The deep industry expertise behind this presentation will provide attendees with a leading edge view of rapidly emerging IoT oppor...
In the consumer IoT, everything is new, and the IT world of bits and bytes holds sway. But industrial and commercial realms encompass operational technology (OT) that has been around for 25 or 50 years. This grittier, pre-IP, more hands-on world has much to gain from Industrial IoT (IIoT) applications and principles. But adding sensors and wireless connectivity won’t work in environments that demand unwavering reliability and performance. In his session at @ThingsExpo, Ron Sege, CEO of Echelon, will discuss how as enterprise IT embraces other IoT-related technology trends, enterprises with i...
The Internet of Things (IoT) is causing data centers to become radically decentralized and atomized within a new paradigm known as “fog computing.” To support IoT applications, such as connected cars and smart grids, data centers' core functions will be decentralized out to the network's edges and endpoints (aka “fogs”). As this trend takes hold, Big Data analytics platforms will focus on high-volume log analysis (aka “logs”) and rely heavily on cognitive-computing algorithms (aka “cogs”) to make sense of it all.
The Internet of Everything (IoE) brings together people, process, data and things to make networked connections more relevant and valuable than ever before – transforming information into knowledge and knowledge into wisdom. IoE creates new capabilities, richer experiences, and unprecedented opportunities to improve business and government operations, decision making and mission support capabilities. In his session at @ThingsExpo, Gary Hall, Chief Technology Officer, Federal Defense at Cisco Systems, will break down the core capabilities of IoT in multiple settings and expand upon IoE for bo...
Sensor-enabled things are becoming more commonplace, precursors to a larger and more complex framework that most consider the ultimate promise of the IoT: things connecting, interacting, sharing, storing, and over time perhaps learning and predicting based on habits, behaviors, location, preferences, purchases and more. In his session at @ThingsExpo, Tom Wesselman, Director of Communications Ecosystem Architecture at Plantronics, will examine the still nascent IoT as it is coalescing, including what it is today, what it might ultimately be, the role of wearable tech, and technology gaps stil...
One of the biggest impacts of the Internet of Things is and will continue to be on data; specifically data volume, management and usage. Companies are scrambling to adapt to this new and unpredictable data reality with legacy infrastructure that cannot handle the speed and volume of data. In his session at @ThingsExpo, Don DeLoach, CEO and president of Infobright, will discuss how companies need to rethink their data infrastructure to participate in the IoT, including: Data storage: Understanding the kinds of data: structured, unstructured, big/small? Analytics: What kinds and how responsiv...
Cloudian, Inc., the leading provider of hybrid cloud storage solutions, today announced availability of Cloudian HyperStore 5.1 software. HyperStore 5.1 is an enhanced Amazon S3-compliant, plug-and-play hybrid cloud software solution that now features full Apache Hadoop integration. Enterprises can now transform big data into smart data by running Hadoop analytics on HyperStore software and appliances. This in-place analytics, with no need to offload data to other systems for Hadoop analyses, enables customers to derive meaningful business intelligence from their data quickly, efficiently and ...
Since 2008 and for the first time in history, more than half of humans live in urban areas, urging cities to become “smart.” Today, cities can leverage the wide availability of smartphones combined with new technologies such as Beacons or NFC to connect their urban furniture and environment to create citizen-first services that improve transportation, way-finding and information delivery. In her session at @ThingsExpo, Laetitia Gazel-Anthoine, CEO of Connecthings, will focus on successful use cases.
Sensor-enabled things are becoming more commonplace, precursors to a larger and more complex framework that most consider the ultimate promise of the IoT: things connecting, interacting, sharing, storing, and over time perhaps learning and predicting based on habits, behaviors, location, preferences, purchases and more. In his session at @ThingsExpo, Tom Wesselman, Director of Communications Ecosystem Architecture at Plantronics, will examine the still nascent IoT as it is coalescing, including what it is today, what it might ultimately be, the role of wearable tech, and technology gaps stil...
The true value of the Internet of Things (IoT) lies not just in the data, but through the services that protect the data, perform the analysis and present findings in a usable way. With many IoT elements rooted in traditional IT components, Big Data and IoT isn’t just a play for enterprise. In fact, the IoT presents SMBs with the prospect of launching entirely new activities and exploring innovative areas. CompTIA research identifies several areas where IoT is expected to have the greatest impact.
Wearable devices have come of age. The primary applications of wearables so far have been "the Quantified Self" or the tracking of one's fitness and health status. We propose the evolution of wearables into social and emotional communication devices. Our BE(tm) sensor uses light to visualize the skin conductance response. Our sensors are very inexpensive and can be massively distributed to audiences or groups of any size, in order to gauge reactions to performances, video, or any kind of presentation. In her session at @ThingsExpo, Jocelyn Scheirer, CEO & Founder of Bionolux, will discuss ho...
The explosion of connected devices / sensors is creating an ever-expanding set of new and valuable data. In parallel the emerging capability of Big Data technologies to store, access, analyze, and react to this data is producing changes in business models under the umbrella of the Internet of Things (IoT). In particular within the Insurance industry, IoT appears positioned to enable deep changes by altering relationships between insurers, distributors, and the insured. In his session at @ThingsExpo, Michael Sick, a Senior Manager and Big Data Architect within Ernst and Young's Financial Servi...