Java IoT Authors: Pat Romanski, Yeshim Deniz, Elizabeth White, Roger Strukhoff, Liz McMillan

Related Topics: Java IoT

Java IoT: Article

Interfaces Vs Abstract Classes In Java

Interfaces Vs Abstract Classes In Java

Have you ever wondered why you should use interfaces instead of abstract classes, or vice versa? More specifically, when dealing with generalization, have you struggled with using one or the other? I'll shed some light on what can be a very confusing issue.

To start, I'll identify two pieces of the development puzzle: the behavior of an object and the object's implementation.

When designing an entity that can have more than one implementation, the goal is to describe the entity's behavior in such a way that it can be used without knowing exactly how the entity's behavior is implemented. In essence, you're separating the behavior of an object from its implementation. But is this separation best achieved by way of an interface or by way of an abstract class? Both can define methods without saying how they work. So which one do you use?

Modeling Behavior in an Abstract Class
As a rule, pure behavior is always modeled by interfaces and not in abstract classes. This example will model behavior in an abstract class to illustrate why.

Pretend you're designing a "motor" entity for an application that your sales department will use to sell motors. You're not modeling every aspect and nuance of a motor, but instead modeling what's important for the company and the process you're automating. (You find out what's important by talking to the users of a system. In this case it's your sales department. Good luck!)

Your sales department says that every motor has a horsepower rating, and this feature is the only attribute they're concerned with.

Based on this statement, you describe the following behavior of a motor:

Behavior: Someone can ask the motor for its horsepower rating, and the motor will return its rating as an integer.

At this point you don't know where the horsepower comes from, but you do know that this behavior must exist.

Translated into a method signature this behavior becomes:

public int getHorsepower()

Your company has several different types of motors, but given our particular application, this behavior is the only rule that applies to all of them. You look at both interfaces and abstract classes, but for purposes of illustration the motors will be modeled as an abstract class.

public abstract Motor{
abstract public int getHorsepower();
You make a handful of concrete implementations of this class, and version 1.0 of the application enters production.

Time passes and you're called to create version 2.0. While reviewing the requirements for the second version, you find that a small subset of motors is battery-powered, and that these batteries take time to recharge. The sales department wants to be able to view the time to recharge from the computer screen. From their statement, you derive a behavior:

Behavior: Someone can ask a battery-powered motor for its time to recharge and the motor will return its time as an integer.

public int getTimeToRecharge();
Translated into a method signature this behavior becomes:
public abstract BatteryPoweredMotor extends Motor{
abstract public int getTimeToRecharge();
The new battery-powered motors are implemented inside the application as concrete classes. It's important to note that these classes extend Battery- PoweredMotor as opposed to Motor. The changes are released as version 2 and the sales department is happy once again.

But business is changing, and soon solar-powered motors are introduced. The sales department tells you that solar-powered motors require a minimum amount of light energy to operate. This light energy is measured in lumens. The customers want to know this information. There's a fear that on cloudy days some solar-powered motors won't operate. The sales department requests that the application be changed to support the new solar-powered motors. From listening to their plight, a behavior is derived.

Behavior: Someone can ask a solar-powered battery for its lumens required to operate and the motor will return an integer.

public int getLumensToOperate();
In an Abstract class
public abstract SolarPoweredMotor extends Motor{
abstract public int getLumensToOperate();
Both SolarPoweredMotor and BatteryPoweredMotor extend the abstract class Motor (see Figure 1).

Throughout your application, motors are treated the same in 90% of the code. When you're checking if you have a solar- or battery-powered motor, use instanceof.

if (instanceof SolarPoweredMotor){...} if (instanceof BatteryPoweredMotor){...}
You find out that horsepower is calculated for each type of motor so the getHorsepower() method is overloaded in each of the derived abstract classes. So far, this design looks good...

That is, until you find out that the sales department wants to sell a new type of motor that has both battery and solar power! The behaviors associated with solar- and battery-powered motors haven't changed. The only difference is you have a handful of motors that exhibit both behaviors.

The Problem with Modeling Behavior in an Abstract Class
Here's where the difference between an interface and an abstract class becomes apparent.

The goal is to add these motors with as little rework as possible. After all, code related to battery- and solar-powered motors is well tested and has no known bugs.

You can make a new abstract class that's SolarBatteryPowered but then your motor won't trigger your instanceof when you check for solar- and battery-powered motors. The other option is to make the new motor extend either the SolarPowered or BatteryPowered abstract class. But if you do that, the new motor will lose the functionality of the abstract class it didn't extend. Technically your new motor needs to extend both abstract classes, but you painted yourself into a corner that can be solved only with a lot of special-case coding.

The reason you're having problems is that by using abstract classes you implied not only a behavior hierarchy but a pattern of implementation as well! You modeled how the motors receive their behavior instead of just saying the motors have a specific behavior.

While the phrase "Someone can ask the motor for its horsepower rating, and the motor will return the rating as an integer" implies something about the behavior of an object, it doesn't deny any behavior. Nevertheless, when you modeled with abstract classes, you created an implementation pattern that later was found to be incorrect, even though the behavior in the hierarchy was accurate.

Modeling Behavior in an Interface
You can avoid accidentally implying an implementation pattern if you model behavior using interfaces. Let's review the behavior:

Behavior: Someone can ask the motor for its horsepower rating, and the motor will return its rating as an integer.

public interface Motor(){
public int getHorsepower();
Behavior: Somone can ask a battery-powered motor for its time to recharge and the motor will return its time as an integer.
public interface BatteryPoweredMotor extends Motor(){
public int getTimeToRecharge();
Behavior: Somone can ask a solar-powered motor for its lumens required to operate, and the motor will return its lumens as an integer.
public interface SolarPoweredMotor extends Motor{
abstract public int getLumensToOperate();
In this way, only behavior is modeled (see Figure 2).

Now, I'll describe the solar-battery-powered motor in question:

public DualMotor implements SolarPoweredMotor, BatteryPoweredMotor{
The dual-powered motor inherits behavior, not implementation (see Figure 3).

You can use abstract classes just as before, except in this case the abstract classes implement behaviors instead of defining them (see Figure 4).

Notice the two separate hierarchies. The interface defines behavior in a very pure way while the abstract class defines a pattern for implementation - including the origin of a given behavior. Notice how the bottom half of the diagram can be totally redesigned and yet the behavioral hierarchy remains intact. As long as the implementing class relies on the interfaces for behavior, the implementing class can change its parent abstract class without changing how other pieces of the code interact with it.

When to Use Abstract Classes
Now that I've fully discussed interfaces, abstract classes may seem like an evil half brother - something to be avoided. This is not the case! When you have a common implementation, abstract classes shine. Using abstract classes you can enforce an implementation hierarchy and avoid duplicate code. Using abstract classes, however, should not affect your decision to use interfaces to define your behavior.

Both parent and child abstract classes should implement interfaces that define the expected behavior if you think the implementation will change. In practice, relying on abstract classes to define behavior leads to an inheritance nightmare, while coding behavior with interfaces provides a cleaner separation of behavior and implementation. Thus it makes your code more resistant to change. If you want to modify your existing code to improve your design, I recommend reading Martin Fowler's book, Refactoring: Improving the Design of Existing Code (Addison-Wesley, 1999). He devotes an entire chapter to refactorings dealing with generalization.

More Stories By Anthony Meyer

Anthony Meyer is a
technical director and a Java developer at Flashline.com. His
experience includes the design, development and implementation of
large-scale, Java-based, Internet applications in the corporate Web
development environment. He has also created and implemented
corporate-focused reuse strategies in the
financial industry.

Comments (0)

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

@ThingsExpo Stories
With tough new regulations coming to Europe on data privacy in May 2018, Calligo will explain why in reality the effect is global and transforms how you consider critical data. EU GDPR fundamentally rewrites the rules for cloud, Big Data and IoT. In his session at 21st Cloud Expo, Adam Ryan, Vice President and General Manager EMEA at Calligo, examined the regulations and provided insight on how it affects technology, challenges the established rules and will usher in new levels of diligence arou...
Dion Hinchcliffe is an internationally recognized digital expert, bestselling book author, frequent keynote speaker, analyst, futurist, and transformation expert based in Washington, DC. He is currently Chief Strategy Officer at the industry-leading digital strategy and online community solutions firm, 7Summits.
Digital Transformation and Disruption, Amazon Style - What You Can Learn. Chris Kocher is a co-founder of Grey Heron, a management and strategic marketing consulting firm. He has 25+ years in both strategic and hands-on operating experience helping executives and investors build revenues and shareholder value. He has consulted with over 130 companies on innovating with new business models, product strategies and monetization. Chris has held management positions at HP and Symantec in addition to ...
Cloud-enabled transformation has evolved from cost saving measure to business innovation strategy -- one that combines the cloud with cognitive capabilities to drive market disruption. Learn how you can achieve the insight and agility you need to gain a competitive advantage. Industry-acclaimed CTO and cloud expert, Shankar Kalyana presents. Only the most exceptional IBMers are appointed with the rare distinction of IBM Fellow, the highest technical honor in the company. Shankar has also receive...
Enterprises have taken advantage of IoT to achieve important revenue and cost advantages. What is less apparent is how incumbent enterprises operating at scale have, following success with IoT, built analytic, operations management and software development capabilities - ranging from autonomous vehicles to manageable robotics installations. They have embraced these capabilities as if they were Silicon Valley startups.
The standardization of container runtimes and images has sparked the creation of an almost overwhelming number of new open source projects that build on and otherwise work with these specifications. Of course, there's Kubernetes, which orchestrates and manages collections of containers. It was one of the first and best-known examples of projects that make containers truly useful for production use. However, more recently, the container ecosystem has truly exploded. A service mesh like Istio addr...
Predicting the future has never been more challenging - not because of the lack of data but because of the flood of ungoverned and risk laden information. Microsoft states that 2.5 exabytes of data are created every day. Expectations and reliance on data are being pushed to the limits, as demands around hybrid options continue to grow.
Poor data quality and analytics drive down business value. In fact, Gartner estimated that the average financial impact of poor data quality on organizations is $9.7 million per year. But bad data is much more than a cost center. By eroding trust in information, analytics and the business decisions based on these, it is a serious impediment to digital transformation.
Business professionals no longer wonder if they'll migrate to the cloud; it's now a matter of when. The cloud environment has proved to be a major force in transitioning to an agile business model that enables quick decisions and fast implementation that solidify customer relationships. And when the cloud is combined with the power of cognitive computing, it drives innovation and transformation that achieves astounding competitive advantage.
Digital Transformation: Preparing Cloud & IoT Security for the Age of Artificial Intelligence. As automation and artificial intelligence (AI) power solution development and delivery, many businesses need to build backend cloud capabilities. Well-poised organizations, marketing smart devices with AI and BlockChain capabilities prepare to refine compliance and regulatory capabilities in 2018. Volumes of health, financial, technical and privacy data, along with tightening compliance requirements by...
As IoT continues to increase momentum, so does the associated risk. Secure Device Lifecycle Management (DLM) is ranked as one of the most important technology areas of IoT. Driving this trend is the realization that secure support for IoT devices provides companies the ability to deliver high-quality, reliable, secure offerings faster, create new revenue streams, and reduce support costs, all while building a competitive advantage in their markets. In this session, we will use customer use cases...
Andrew Keys is Co-Founder of ConsenSys Enterprise. He comes to ConsenSys Enterprise with capital markets, technology and entrepreneurial experience. Previously, he worked for UBS investment bank in equities analysis. Later, he was responsible for the creation and distribution of life settlement products to hedge funds and investment banks. After, he co-founded a revenue cycle management company where he learned about Bitcoin and eventually Ethereal. Andrew's role at ConsenSys Enterprise is a mul...
DXWorldEXPO LLC announced today that "Miami Blockchain Event by FinTechEXPO" has announced that its Call for Papers is now open. The two-day event will present 20 top Blockchain experts. All speaking inquiries which covers the following information can be submitted by email to [email protected] Financial enterprises in New York City, London, Singapore, and other world financial capitals are embracing a new generation of smart, automated FinTech that eliminates many cumbersome, slow, and expe...
DXWorldEXPO | CloudEXPO are the world's most influential, independent events where Cloud Computing was coined and where technology buyers and vendors meet to experience and discuss the big picture of Digital Transformation and all of the strategies, tactics, and tools they need to realize their goals. Sponsors of DXWorldEXPO | CloudEXPO benefit from unmatched branding, profile building and lead generation opportunities.
The best way to leverage your Cloud Expo presence as a sponsor and exhibitor is to plan your news announcements around our events. The press covering Cloud Expo and @ThingsExpo will have access to these releases and will amplify your news announcements. More than two dozen Cloud companies either set deals at our shows or have announced their mergers and acquisitions at Cloud Expo. Product announcements during our show provide your company with the most reach through our targeted audiences.
DevOpsSummit New York 2018, colocated with CloudEXPO | DXWorldEXPO New York 2018 will be held November 11-13, 2018, in New York City. Digital Transformation (DX) is a major focus with the introduction of DXWorldEXPO within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive over the long term. A total of 88% of Fortune 500 companies from a generation ago are now out of bus...
With 10 simultaneous tracks, keynotes, general sessions and targeted breakout classes, @CloudEXPO and DXWorldEXPO are two of the most important technology events of the year. Since its launch over eight years ago, @CloudEXPO and DXWorldEXPO have presented a rock star faculty as well as showcased hundreds of sponsors and exhibitors! In this blog post, we provide 7 tips on how, as part of our world-class faculty, you can deliver one of the most popular sessions at our events. But before reading...
Cloud Expo | DXWorld Expo have announced the conference tracks for Cloud Expo 2018. Cloud Expo will be held June 5-7, 2018, at the Javits Center in New York City, and November 6-8, 2018, at the Santa Clara Convention Center, Santa Clara, CA. Digital Transformation (DX) is a major focus with the introduction of DX Expo within the program. Successful transformation requires a laser focus on being data-driven and on using all the tools available that enable transformation if they plan to survive ov...
DXWordEXPO New York 2018, colocated with CloudEXPO New York 2018 will be held November 11-13, 2018, in New York City and will bring together Cloud Computing, FinTech and Blockchain, Digital Transformation, Big Data, Internet of Things, DevOps, AI, Machine Learning and WebRTC to one location.
DXWorldEXPO LLC announced today that ICOHOLDER named "Media Sponsor" of Miami Blockchain Event by FinTechEXPO. ICOHOLDER give you detailed information and help the community to invest in the trusty projects. Miami Blockchain Event by FinTechEXPO has opened its Call for Papers. The two-day event will present 20 top Blockchain experts. All speaking inquiries which covers the following information can be submitted by email to [email protected] Miami Blockchain Event by FinTechEXPO also offers s...