Click here to close now.


Java IoT Authors: Brian Daleiden, Anders Wallgren, Pat Romanski, Tim Hinds, Bill Szybillo

Related Topics: Java IoT

Java IoT: Article

Are You Using Abstract Classes, Polymorphism, and Interfaces?

Are You Using Abstract Classes, Polymorphism, and Interfaces?

If the answer is no, at a minimum your project needs a code review.

Let's work on the following assignment: a company has employees and consultants. Design classes with and without the use of inheritance to represent the people who work for this company. The classes should have the following methods:


  • changeAddress
  • promote
  • giveDayOff
  • raiseSalary

Promotion means giving one day off and raising the salary by a specified percentage. For employees, the method raiseSalary should raise the yearly salary and, for consultants, it should increase their hourly rate.

Abstract Classes
A class is called abstract if it has at least one abstract (not implemented) method. The keyword abstract has to be placed in the definition of the method(s) and the class itself. For example, the class in Listing 1 has three concrete methods and one abstract. (The link to the source code is available below the article)

Abstract classes cannot be instantiated, but they allow you to create superclasses that implement some of the functionality, while leaving one or more methods to be implemented in subclasses.

The class Person can contain dozens of concrete methods that are the same for every person, such as changeAddress and giveDayOff, but since the process of raising a salary is different for employees and consultants, the method raiseSalary should remain abstract. Please note that even though this method is abstract, it could be called in an abstract class because by the time the concrete class is instantiated, the method will be already implemented. Since we have two types of workers, let's create subclasses Employee and Consultant and implement the method raiseSalary based on different rules (see Listings 2 and 3).

The designer of the class Person may not know the specifics of the raising salary process, but this does not stop him or her from calling the method raiseSalary. Programmers writing subclasses are forced to write an implementation of this method according to its signature declared in the abstract class. If they declare a method raiseSalary with a different argument list, this will be considered method overloading and the subclass will remain abstract. The class Promoter in Listing 4 shows how to use the classes Employee and Consultant for promoting workers.

A programming language could be considered object-oriented if it supports inheritance, encapsulation, and polymorphism. The first two notions can be easily defined:

  • Inheritance lets you design a class by deriving it from an existing one. This feature allows you to reuse existing code without doing copy and paste. Java provides the keyword extends for declaring inheritance.
  • Encapsulation is the ability to hide and protect data. Java has access-level qualifiers such as public, private, and protected to control who can access class variables and methods. There is also so-called package-level protection, which is automatically engaged if you don't use any of the access-level keywords.
  • Polymorphism, though, is easier to understand through an example. Let's look at the classes Person, Employee, and Consultant from a different angle. We'll populate a Vector, mixing up the instances of classes Employee and Consultant - in real life this information usually comes from a database. For example, a program could get the person's work status from the database and instantiate an appropriate concrete class. The class Promoter (see Listing 4) will give an additional vacation day and increase the salary or hourly rate of every worker by 5%.

Please note that even though we cast every object from the collection workers to the ancestor's type Person in line 17, Listing 4, the variable pers can hold references to its descendent objects. The actual object type will be evaluated during runtime only. This feature of object-oriented languages is called runtime or late binding.

The output of the class Promoter will look as follows:

Class Person: Promoting a worker...
Class Person: Adding a day off
Class Employee:Increasing salary by 5%
Class Person: Promoting a worker...
Class Person: Adding a day off
Class Consultant: Increasing hourly rate by 5%
Class Person: Promoting a worker...
Class Person: Adding a day off
Class Employee:Increasing salary by 5%
Class Person: Promoting a worker...
Class Person: Adding a day off
Class Employee:Increasing salary by 5%

Both classes Employee and Consultant are inherited from the same base class Person. Instead of having different methods for increasing the worker's compensation based on its type, we give a polymorphic behavior to the method raiseSalary, which applies different business logic depending on the type of object from the collection. Even though it looks as if we're calling the same method promote, this is not the case. Since the actual object type is evaluated during runtime, the salary is raised properly according to this particular object's implementation of the method raiseSalary. This is polymorphism in action.

The while loop in the class Promoter will remain the same even if we add some other types of workers inherited from the class Person. For example, to add a new category of worker - a foreign contractor - we'll have to create a class Foreign- Contractor derived from the class Person and implement the method raiseSalary there. The class Promoter will keep casting all these objects to the type Person during runtime and call the method raiseSalary of the proper object.

Polymorphism allows you to avoid using switch or if statements with the expensive operator instanceof. Listing 5 shows an ugly alternative to our while loop from the class Promoter that assumes there is no abstract method raiseSalary, but we have separate promote methods in each subclass of the Person. This code would work slower than the polymorphic version from the class Promoter, and the if statement would have to be modified every time a new type of worker is added.

A similar functionality could be implemented using Java interfaces. We'll keep working with a modified version of the ancestor class Person because it has such useful methods as changeAddress and giveDayOff. But this class doesn't have to be abstract anymore because the method raiseSalary will be moved to a Java interface. The method promote won't be needed; we'd rather make the method giveDayOff available to descendants of the class Person by changing the private access level to protected (see line 8 in Listing 6).

Here's the "interface way" to ensure that each person in the firm receives the proper salary raise despite the differences in payroll calculation.

Let's define an interface Payable in Listing 7. More than one class can implement this interface (see Listing 8). When the class Consultant declares that it implements interface Payable, it promises to write implementations for all methods declared in this interface - in our case it's just one method raiseSalary. Why is it so important that the class will "keep the promise" and implement all the interface's methods? In many cases interface is a description of some behavior. In our case behavior Payable means the existence of the method boolean raiseSalary(int percent). If any other class knows that Employee implements Payable, it can safely call any method declared in the Payable interface (see the interface example in Listing 9).

Let's forget for a moment about employees and consultants and switch to the Java AWT listeners and events. When a class declares that it implements the interface java.awt.Action- Listener, a JVM will call the method actionPerformed on this class whenever the user clicks on the window's button, and in some other cases as well. Try to imagine what would happen if you forgot to include the method actionPerformed in your class. The good news is that your class won't even compile if not all methods declared in the interface were implemented. The java.awt.WindowListener interface declares seven methods, and even if you are interested only in the windowClosing one, you must include six additional empty-bodied methods to compile the class (window adapters simplify this process, but they are beyond the scope of this article).

While both abstract classes and interfaces can ensure that a concrete class will have all required methods, abstract classes can also contain implemented methods, but interfaces can't.

Beside method declarations, interfaces can contain final static variables. For example, let's say we have multiple bonus-level codes used in several classes during the calculation of new salaries. Instead of redefining these constants in every class that needs them, we can create the interface shown in Listing 10.

Now a small change in the class declaration will allow us to use these bonus levels as if they were declared in the class Employee:

public class Employee
implements Payable, Bonus {
if (empLevel==JUNIOR_LVL){
//apply the rules for juniors

public class Consultant
implements Payable, Bonus {

Java does not allow multiple inheritance, which means a class can't have two independent ancestors, but you can use interfaces as a workaround. As you've seen in the example above, a class can implement multiple interfaces; it just needs to implement all methods declared in all interfaces. If your window needs to process button clicks and window closing events, you can declare a class as follows:


class MyWindow implements ActionListener, WindowListener{S}

During evolution, an Employee can obtain multiple behaviors, for example


class Employee extends Person
implements Payable, Transferable,
Sueable, Bonus {...}

Consultants such as myself are usually more primitive creatures and can be defined as follows:

class Consultant extends Person
implements Payable, Sueable {...}

But if a program such as Promoter is interested only in Payable functions, it can cast the object only to those interfaces it intends to use, for example:


Employee emp = new Employee();
Consultant con = new Consultant();
Payable person1 = (Payable) emp;
Payable person2 = (Payable) con;

Now we're ready to write a second version of the class Promoter that will use the classes Employee and Consultant defined in Listings 8 and 11.

The output of this program will look similar to the output of the class Promoter from Listing 4:

Class Employee:Increasing salary by 5%
Class Consultant: Increasing hourly rate by 5%
Class Employee:Increasing salary by 5%
Class Employee:Increasing salary by 5%

Line 18 of Listing 9 may look a little confusing: How can we call a concrete method raiseSalary on a variable of an interface type? Actually we call a method on a concrete instance of the Employee or a Consultant, but by casting this instance to the type Payable we are just letting the JVM know that we're only interested in the methods that were declared in this particular interface.

Java Technical Interviews
During the technical interviews, probably the most frequently asked question is, "What's the difference between Java abstract classes and interfaces?" While interviewing Java programmers, I also found out that only half of the job applicants could properly complete the assignment described at the beginning of this article.

During the job interview your answers should be clear and short; you won't even have a chance to use all the material presented here. Here's one version of the answer to our problem.

If two classes have lots of common functionality, but some methods should be implemented differently, you could create a common abstract ancestor Person and two subclasses Employee and Consultant. The method raiseSalary must be declared abstract in the class Person while other methods should be concrete. This way we ensure that the subclasses do have the method named raiseSalary with a known signature, so we could use it in the ancestor without knowing its implementation. Java interfaces should also be considered in cases when the same method must be implemented in multiple classes - in this case we do not need to use abstract ancestors. Actually, interfaces could be your only option if a class already has an ancestor that can not be changed.

One good interview technique is to impress the interviewer by elaborating on a related topic. Discussion of abstract classes and interfaces gives you a good opportunity to show your understanding of polymorphism.

Use of abstract classes, interfaces, and polymorphism improves the design of any project by making it more readable and easily extensible. This also makes your code more compact and elegant.

More Stories By Yakov Fain

Yakov Fain is a co-founder of two software companies: Farata Systems and SuranceBay. He authored several technical books and lots of articles on software development. Yakov is Java Champion ( He leads leads Princeton Java Users Group. Two of Yakov's books will go in print this year: "Enterprise Web Development" (O'Reilly) and "Java For Kids" (No Starch Press).

Comments (4) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.

Most Recent Comments
sherali Inamdar 12/14/07 05:04:48 AM EST

Hi Dear Yakov Fain,
Even If a class Dont Have Abstract Method(i.e all methods may concrete), we can declare it as a Abstract Class. just appending the keyword

Taitelman mordechai 12/10/07 11:28:31 AM EST

Regarding your last paragraph: when to use Abstract class vs. Interface:
In terms of OOD the decision is more architectural:
Abstract class and interfaces are two ways to enforce an implementation in sub-classes.
However, I believe the main importance of Interfaces in Java is to overcome the multi-inheritance limitation.
The 2nd issue is agreed API between components. Two people should declare an interface if they intend to split up and re-join after several months. So what you should consider is: what is the probability this class would cross the boundaries of the component ?
Abstract class should be considered more inside the component. In many cases abstract classes are added in order to prevent circular dependencies between packages (in the same component). Furthermore, abstract class is your way to enforce some implementation details.
Beside that, in Java an interface is identical to (pure) abstract class.

punit pandey 09/04/03 11:00:08 AM EDT

It is a great article. good for newbies.

Steve Kasson 09/03/03 09:14:05 AM EDT

The source code is not available for this article. It references Listings 1 - 11, but I cannot find them anywhere.

Otherwise... excellent article.


@ThingsExpo Stories
Today air travel is a minefield of delays, hassles and customer disappointment. Airlines struggle to revitalize the experience. GE and M2Mi will demonstrate practical examples of how IoT solutions are helping airlines bring back personalization, reduce trip time and improve reliability. In their session at @ThingsExpo, Shyam Varan Nath, Principal Architect with GE, and Dr. Sarah Cooper, M2Mi’s VP Business Development and Engineering, explored the IoT cloud-based platform technologies driving this change including privacy controls, data transparency and integration of real time context with p...
The Internet of Things (IoT) is growing rapidly by extending current technologies, products and networks. By 2020, Cisco estimates there will be 50 billion connected devices. Gartner has forecast revenues of over $300 billion, just to IoT suppliers. Now is the time to figure out how you’ll make money – not just create innovative products. With hundreds of new products and companies jumping into the IoT fray every month, there’s no shortage of innovation. Despite this, McKinsey/VisionMobile data shows "less than 10 percent of IoT developers are making enough to support a reasonably sized team....
Just over a week ago I received a long and loud sustained applause for a presentation I delivered at this year’s Cloud Expo in Santa Clara. I was extremely pleased with the turnout and had some very good conversations with many of the attendees. Over the next few days I had many more meaningful conversations and was not only happy with the results but also learned a few new things. Here is everything I learned in those three days distilled into three short points.
Most of the IoT Gateway scenarios involve collecting data from machines/processing and pushing data upstream to cloud for further analytics. The gateway hardware varies from Raspberry Pi to Industrial PCs. The document states the process of allowing deploying polyglot data pipelining software with the clear notion of supporting immutability. In his session at @ThingsExpo, Shashank Jain, a development architect for SAP Labs, discussed the objective, which is to automate the IoT deployment process from development to production scenarios using Docker containers.
DevOps is about increasing efficiency, but nothing is more inefficient than building the same application twice. However, this is a routine occurrence with enterprise applications that need both a rich desktop web interface and strong mobile support. With recent technological advances from Isomorphic Software and others, rich desktop and tuned mobile experiences can now be created with a single codebase – without compromising functionality, performance or usability. In his session at DevOps Summit, Charles Kendrick, CTO and Chief Architect at Isomorphic Software, demonstrated examples of com...
As organizations realize the scope of the Internet of Things, gaining key insights from Big Data, through the use of advanced analytics, becomes crucial. However, IoT also creates the need for petabyte scale storage of data from millions of devices. A new type of Storage is required which seamlessly integrates robust data analytics with massive scale. These storage systems will act as “smart systems” provide in-place analytics that speed discovery and enable businesses to quickly derive meaningful and actionable insights. In his session at @ThingsExpo, Paul Turner, Chief Marketing Officer at...
In his keynote at @ThingsExpo, Chris Matthieu, Director of IoT Engineering at Citrix and co-founder and CTO of Octoblu, focused on building an IoT platform and company. He provided a behind-the-scenes look at Octoblu’s platform, business, and pivots along the way (including the Citrix acquisition of Octoblu).
In his General Session at 17th Cloud Expo, Bruce Swann, Senior Product Marketing Manager for Adobe Campaign, explored the key ingredients of cross-channel marketing in a digital world. Learn how the Adobe Marketing Cloud can help marketers embrace opportunities for personalized, relevant and real-time customer engagement across offline (direct mail, point of sale, call center) and digital (email, website, SMS, mobile apps, social networks, connected objects).
With all the incredible momentum behind the Internet of Things (IoT) industry, it is easy to forget that not a single CEO wakes up and wonders if “my IoT is broken.” What they wonder is if they are making the right decisions to do all they can to increase revenue, decrease costs, and improve customer experience – effectively the same challenges they have always had in growing their business. The exciting thing about the IoT industry is now these decisions can be better, faster, and smarter. Now all corporate assets – people, objects, and spaces – can share information about themselves and thei...
The Internet of Everything is re-shaping technology trends–moving away from “request/response” architecture to an “always-on” Streaming Web where data is in constant motion and secure, reliable communication is an absolute necessity. As more and more THINGS go online, the challenges that developers will need to address will only increase exponentially. In his session at @ThingsExpo, Todd Greene, Founder & CEO of PubNub, exploreed the current state of IoT connectivity and review key trends and technology requirements that will drive the Internet of Things from hype to reality.
Two weeks ago (November 3-5), I attended the Cloud Expo Silicon Valley as a speaker, where I presented on the security and privacy due diligence requirements for cloud solutions. Cloud security is a topical issue for every CIO, CISO, and technology buyer. Decision-makers are always looking for insights on how to mitigate the security risks of implementing and using cloud solutions. Based on the presentation topics covered at the conference, as well as the general discussions heard between sessions, I wanted to share some of my observations on emerging trends. As cyber security serves as a fou...
The cloud. Like a comic book superhero, there seems to be no problem it can’t fix or cost it can’t slash. Yet making the transition is not always easy and production environments are still largely on premise. Taking some practical and sensible steps to reduce risk can also help provide a basis for a successful cloud transition. A plethora of surveys from the likes of IDG and Gartner show that more than 70 percent of enterprises have deployed at least one or more cloud application or workload. Yet a closer inspection at the data reveals less than half of these cloud projects involve production...
Countless business models have spawned from the IaaS industry – resell Web hosting, blogs, public cloud, and on and on. With the overwhelming amount of tools available to us, it's sometimes easy to overlook that many of them are just new skins of resources we've had for a long time. In his general session at 17th Cloud Expo, Harold Hannon, Sr. Software Architect at SoftLayer, an IBM Company, broke down what we have to work with, discussed the benefits and pitfalls and how we can best use them to design hosted applications.
Discussions of cloud computing have evolved in recent years from a focus on specific types of cloud, to a world of hybrid cloud, and to a world dominated by the APIs that make today's multi-cloud environments and hybrid clouds possible. In this Power Panel at 17th Cloud Expo, moderated by Conference Chair Roger Strukhoff, panelists addressed the importance of customers being able to use the specific technologies they need, through environments and ecosystems that expose their APIs to make true change and transformation possible.
Microservices are a very exciting architectural approach that many organizations are looking to as a way to accelerate innovation. Microservices promise to allow teams to move away from monolithic "ball of mud" systems, but the reality is that, in the vast majority of organizations, different projects and technologies will continue to be developed at different speeds. How to handle the dependencies between these disparate systems with different iteration cycles? Consider the "canoncial problem" in this scenario: microservice A (releases daily) depends on a couple of additions to backend B (re...
Container technology is shaping the future of DevOps and it’s also changing the way organizations think about application development. With the rise of mobile applications in the enterprise, businesses are abandoning year-long development cycles and embracing technologies that enable rapid development and continuous deployment of apps. In his session at DevOps Summit, Kurt Collins, Developer Evangelist at, examined how Docker has evolved into a highly effective tool for application delivery by allowing increasingly popular Mobile Backend-as-a-Service (mBaaS) platforms to quickly crea...
Too often with compelling new technologies market participants become overly enamored with that attractiveness of the technology and neglect underlying business drivers. This tendency, what some call the “newest shiny object syndrome” is understandable given that virtually all of us are heavily engaged in technology. But it is also mistaken. Without concrete business cases driving its deployment, IoT, like many other technologies before it, will fade into obscurity.
We all know that data growth is exploding and storage budgets are shrinking. Instead of showing you charts on about how much data there is, in his General Session at 17th Cloud Expo, Scott Cleland, Senior Director of Product Marketing at HGST, showed how to capture all of your data in one place. After you have your data under control, you can then analyze it in one place, saving time and resources.
The Internet of Things is clearly many things: data collection and analytics, wearables, Smart Grids and Smart Cities, the Industrial Internet, and more. Cool platforms like Arduino, Raspberry Pi, Intel's Galileo and Edison, and a diverse world of sensors are making the IoT a great toy box for developers in all these areas. In this Power Panel at @ThingsExpo, moderated by Conference Chair Roger Strukhoff, panelists discussed what things are the most important, which will have the most profound effect on the world, and what should we expect to see over the next couple of years.
Growth hacking is common for startups to make unheard-of progress in building their business. Career Hacks can help Geek Girls and those who support them (yes, that's you too, Dad!) to excel in this typically male-dominated world. Get ready to learn the facts: Is there a bias against women in the tech / developer communities? Why are women 50% of the workforce, but hold only 24% of the STEM or IT positions? Some beginnings of what to do about it! In her Day 2 Keynote at 17th Cloud Expo, Sandy Carter, IBM General Manager Cloud Ecosystem and Developers, and a Social Business Evangelist, wil...