Click here to close now.



Welcome!

Java IoT Authors: Pat Romanski, Jnan Dash, Sanjay Uppal, AppDynamics Blog, Scott Allen

Related Topics: Java IoT

Java IoT: Article

Are You Using Abstract Classes, Polymorphism, and Interfaces?

Are You Using Abstract Classes, Polymorphism, and Interfaces?

If the answer is no, at a minimum your project needs a code review.

Let's work on the following assignment: a company has employees and consultants. Design classes with and without the use of inheritance to represent the people who work for this company. The classes should have the following methods:

 

  • changeAddress
  • promote
  • giveDayOff
  • raiseSalary

Promotion means giving one day off and raising the salary by a specified percentage. For employees, the method raiseSalary should raise the yearly salary and, for consultants, it should increase their hourly rate.

Abstract Classes
A class is called abstract if it has at least one abstract (not implemented) method. The keyword abstract has to be placed in the definition of the method(s) and the class itself. For example, the class in Listing 1 has three concrete methods and one abstract. (The link to the source code is available below the article)

Abstract classes cannot be instantiated, but they allow you to create superclasses that implement some of the functionality, while leaving one or more methods to be implemented in subclasses.

The class Person can contain dozens of concrete methods that are the same for every person, such as changeAddress and giveDayOff, but since the process of raising a salary is different for employees and consultants, the method raiseSalary should remain abstract. Please note that even though this method is abstract, it could be called in an abstract class because by the time the concrete class is instantiated, the method will be already implemented. Since we have two types of workers, let's create subclasses Employee and Consultant and implement the method raiseSalary based on different rules (see Listings 2 and 3).

The designer of the class Person may not know the specifics of the raising salary process, but this does not stop him or her from calling the method raiseSalary. Programmers writing subclasses are forced to write an implementation of this method according to its signature declared in the abstract class. If they declare a method raiseSalary with a different argument list, this will be considered method overloading and the subclass will remain abstract. The class Promoter in Listing 4 shows how to use the classes Employee and Consultant for promoting workers.

Polymorphism
A programming language could be considered object-oriented if it supports inheritance, encapsulation, and polymorphism. The first two notions can be easily defined:

  • Inheritance lets you design a class by deriving it from an existing one. This feature allows you to reuse existing code without doing copy and paste. Java provides the keyword extends for declaring inheritance.
  • Encapsulation is the ability to hide and protect data. Java has access-level qualifiers such as public, private, and protected to control who can access class variables and methods. There is also so-called package-level protection, which is automatically engaged if you don't use any of the access-level keywords.
  • Polymorphism, though, is easier to understand through an example. Let's look at the classes Person, Employee, and Consultant from a different angle. We'll populate a Vector, mixing up the instances of classes Employee and Consultant - in real life this information usually comes from a database. For example, a program could get the person's work status from the database and instantiate an appropriate concrete class. The class Promoter (see Listing 4) will give an additional vacation day and increase the salary or hourly rate of every worker by 5%.

Please note that even though we cast every object from the collection workers to the ancestor's type Person in line 17, Listing 4, the variable pers can hold references to its descendent objects. The actual object type will be evaluated during runtime only. This feature of object-oriented languages is called runtime or late binding.

The output of the class Promoter will look as follows:

Class Person: Promoting a worker...
Class Person: Adding a day off
Class Employee:Increasing salary by 5%
Class Person: Promoting a worker...
Class Person: Adding a day off
Class Consultant: Increasing hourly rate by 5%
Class Person: Promoting a worker...
Class Person: Adding a day off
Class Employee:Increasing salary by 5%
Class Person: Promoting a worker...
Class Person: Adding a day off
Class Employee:Increasing salary by 5%

Both classes Employee and Consultant are inherited from the same base class Person. Instead of having different methods for increasing the worker's compensation based on its type, we give a polymorphic behavior to the method raiseSalary, which applies different business logic depending on the type of object from the collection. Even though it looks as if we're calling the same method promote, this is not the case. Since the actual object type is evaluated during runtime, the salary is raised properly according to this particular object's implementation of the method raiseSalary. This is polymorphism in action.

The while loop in the class Promoter will remain the same even if we add some other types of workers inherited from the class Person. For example, to add a new category of worker - a foreign contractor - we'll have to create a class Foreign- Contractor derived from the class Person and implement the method raiseSalary there. The class Promoter will keep casting all these objects to the type Person during runtime and call the method raiseSalary of the proper object.

Polymorphism allows you to avoid using switch or if statements with the expensive operator instanceof. Listing 5 shows an ugly alternative to our while loop from the class Promoter that assumes there is no abstract method raiseSalary, but we have separate promote methods in each subclass of the Person. This code would work slower than the polymorphic version from the class Promoter, and the if statement would have to be modified every time a new type of worker is added.

Interfaces
A similar functionality could be implemented using Java interfaces. We'll keep working with a modified version of the ancestor class Person because it has such useful methods as changeAddress and giveDayOff. But this class doesn't have to be abstract anymore because the method raiseSalary will be moved to a Java interface. The method promote won't be needed; we'd rather make the method giveDayOff available to descendants of the class Person by changing the private access level to protected (see line 8 in Listing 6).

Here's the "interface way" to ensure that each person in the firm receives the proper salary raise despite the differences in payroll calculation.

Let's define an interface Payable in Listing 7. More than one class can implement this interface (see Listing 8). When the class Consultant declares that it implements interface Payable, it promises to write implementations for all methods declared in this interface - in our case it's just one method raiseSalary. Why is it so important that the class will "keep the promise" and implement all the interface's methods? In many cases interface is a description of some behavior. In our case behavior Payable means the existence of the method boolean raiseSalary(int percent). If any other class knows that Employee implements Payable, it can safely call any method declared in the Payable interface (see the interface example in Listing 9).

Let's forget for a moment about employees and consultants and switch to the Java AWT listeners and events. When a class declares that it implements the interface java.awt.Action- Listener, a JVM will call the method actionPerformed on this class whenever the user clicks on the window's button, and in some other cases as well. Try to imagine what would happen if you forgot to include the method actionPerformed in your class. The good news is that your class won't even compile if not all methods declared in the interface were implemented. The java.awt.WindowListener interface declares seven methods, and even if you are interested only in the windowClosing one, you must include six additional empty-bodied methods to compile the class (window adapters simplify this process, but they are beyond the scope of this article).

While both abstract classes and interfaces can ensure that a concrete class will have all required methods, abstract classes can also contain implemented methods, but interfaces can't.

Beside method declarations, interfaces can contain final static variables. For example, let's say we have multiple bonus-level codes used in several classes during the calculation of new salaries. Instead of redefining these constants in every class that needs them, we can create the interface shown in Listing 10.

Now a small change in the class declaration will allow us to use these bonus levels as if they were declared in the class Employee:

public class Employee
implements Payable, Bonus {
...
if (empLevel==JUNIOR_LVL){
//apply the rules for juniors
}
}

public class Consultant
implements Payable, Bonus {
...
}

Java does not allow multiple inheritance, which means a class can't have two independent ancestors, but you can use interfaces as a workaround. As you've seen in the example above, a class can implement multiple interfaces; it just needs to implement all methods declared in all interfaces. If your window needs to process button clicks and window closing events, you can declare a class as follows:

 

class MyWindow implements ActionListener, WindowListener{S}

During evolution, an Employee can obtain multiple behaviors, for example

 

class Employee extends Person
implements Payable, Transferable,
Sueable, Bonus {...}

Consultants such as myself are usually more primitive creatures and can be defined as follows:

class Consultant extends Person
implements Payable, Sueable {...}

But if a program such as Promoter is interested only in Payable functions, it can cast the object only to those interfaces it intends to use, for example:

 

Employee emp = new Employee();
Consultant con = new Consultant();
Payable person1 = (Payable) emp;
Payable person2 = (Payable) con;

Now we're ready to write a second version of the class Promoter that will use the classes Employee and Consultant defined in Listings 8 and 11.

The output of this program will look similar to the output of the class Promoter from Listing 4:

Class Employee:Increasing salary by 5%
Class Consultant: Increasing hourly rate by 5%
Class Employee:Increasing salary by 5%
Class Employee:Increasing salary by 5%

Line 18 of Listing 9 may look a little confusing: How can we call a concrete method raiseSalary on a variable of an interface type? Actually we call a method on a concrete instance of the Employee or a Consultant, but by casting this instance to the type Payable we are just letting the JVM know that we're only interested in the methods that were declared in this particular interface.

Java Technical Interviews
During the technical interviews, probably the most frequently asked question is, "What's the difference between Java abstract classes and interfaces?" While interviewing Java programmers, I also found out that only half of the job applicants could properly complete the assignment described at the beginning of this article.

During the job interview your answers should be clear and short; you won't even have a chance to use all the material presented here. Here's one version of the answer to our problem.

If two classes have lots of common functionality, but some methods should be implemented differently, you could create a common abstract ancestor Person and two subclasses Employee and Consultant. The method raiseSalary must be declared abstract in the class Person while other methods should be concrete. This way we ensure that the subclasses do have the method named raiseSalary with a known signature, so we could use it in the ancestor without knowing its implementation. Java interfaces should also be considered in cases when the same method must be implemented in multiple classes - in this case we do not need to use abstract ancestors. Actually, interfaces could be your only option if a class already has an ancestor that can not be changed.

One good interview technique is to impress the interviewer by elaborating on a related topic. Discussion of abstract classes and interfaces gives you a good opportunity to show your understanding of polymorphism.

Summary
Use of abstract classes, interfaces, and polymorphism improves the design of any project by making it more readable and easily extensible. This also makes your code more compact and elegant.

More Stories By Yakov Fain

Yakov Fain is a co-founder of two software companies: Farata Systems and SuranceBay. He authored several technical books and lots of articles on software development. Yakov is Java Champion (https://java-champions.java.net). He leads leads Princeton Java Users Group. Two of Yakov's books will go in print this year: "Enterprise Web Development" (O'Reilly) and "Java For Kids" (No Starch Press).

Comments (4) View Comments

Share your thoughts on this story.

Add your comment
You must be signed in to add a comment. Sign-in | Register

In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


Most Recent Comments
sherali Inamdar 12/14/07 05:04:48 AM EST

Hi Dear Yakov Fain,
Even If a class Dont Have Abstract Method(i.e all methods may concrete), we can declare it as a Abstract Class. just appending the keyword

Taitelman mordechai 12/10/07 11:28:31 AM EST

Regarding your last paragraph: when to use Abstract class vs. Interface:
In terms of OOD the decision is more architectural:
Abstract class and interfaces are two ways to enforce an implementation in sub-classes.
However, I believe the main importance of Interfaces in Java is to overcome the multi-inheritance limitation.
The 2nd issue is agreed API between components. Two people should declare an interface if they intend to split up and re-join after several months. So what you should consider is: what is the probability this class would cross the boundaries of the component ?
Abstract class should be considered more inside the component. In many cases abstract classes are added in order to prevent circular dependencies between packages (in the same component). Furthermore, abstract class is your way to enforce some implementation details.
Beside that, in Java an interface is identical to (pure) abstract class.

punit pandey 09/04/03 11:00:08 AM EDT

It is a great article. good for newbies.

Steve Kasson 09/03/03 09:14:05 AM EDT

The source code is not available for this article. It references Listings 1 - 11, but I cannot find them anywhere.

Otherwise... excellent article.

-Steve

@ThingsExpo Stories
SYS-CON Events announced today that Commvault, a global leader in enterprise data protection and information management, has been named “Bronze Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY, and the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Commvault is a leading provider of data protection and information management...
The cloud promises new levels of agility and cost-savings for Big Data, data warehousing and analytics. But it’s challenging to understand all the options – from IaaS and PaaS to newer services like HaaS (Hadoop as a Service) and BDaaS (Big Data as a Service). In her session at @BigDataExpo at @ThingsExpo, Hannah Smalltree, a director at Cazena, will provide an educational overview of emerging “as-a-service” options for Big Data in the cloud. This is critical background for IT and data profes...
SYS-CON Events announced today that VAI, a leading ERP software provider, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. VAI (Vormittag Associates, Inc.) is a leading independent mid-market ERP software developer renowned for its flexible solutions and ability to automate critical business functions for the distribution, manufacturing, specialty retail and service sectors. An IBM Premier Business Part...
SYS-CON Events announced today that Alert Logic, Inc., the leading provider of Security-as-a-Service solutions for the cloud, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Alert Logic, Inc., provides Security-as-a-Service for on-premises, cloud, and hybrid infrastructures, delivering deep security insight and continuous protection for customers at a lower cost than traditional security solutions. Ful...
Fortunately, meaningful and tangible business cases for IoT are plentiful in a broad array of industries and vertical markets. These range from simple warranty cost reduction for capital intensive assets, to minimizing downtime for vital business tools, to creating feedback loops improving product design, to improving and enhancing enterprise customer experiences. All of these business cases, which will be briefly explored in this session, hinge on cost effectively extracting relevant data from ...
With the Apple Watch making its way onto wrists all over the world, it’s only a matter of time before it becomes a staple in the workplace. In fact, Forrester reported that 68 percent of technology and business decision-makers characterize wearables as a top priority for 2015. Recognizing their business value early on, FinancialForce.com was the first to bring ERP to wearables, helping streamline communication across front and back office functions. In his session at @ThingsExpo, Kevin Roberts...
SYS-CON Events announced today that Interoute, owner-operator of one of Europe's largest networks and a global cloud services platform, has been named “Bronze Sponsor” of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2015 at the Javits Center in New York, New York. Interoute is the owner-operator of one of Europe's largest networks and a global cloud services platform which encompasses 12 data centers, 14 virtual data centers and 31 colocation centers, with connections to 195 ad...
With an estimated 50 billion devices connected to the Internet by 2020, several industries will begin to expand their capabilities for retaining end point data at the edge to better utilize the range of data types and sheer volume of M2M data generated by the Internet of Things. In his session at @ThingsExpo, Don DeLoach, CEO and President of Infobright, will discuss the infrastructures businesses will need to implement to handle this explosion of data by providing specific use cases for filte...
As enterprises work to take advantage of Big Data technologies, they frequently become distracted by product-level decisions. In most new Big Data builds this approach is completely counter-productive: it presupposes tools that may not be a fit for development teams, forces IT to take on the burden of evaluating and maintaining unfamiliar technology, and represents a major up-front expense. In his session at @BigDataExpo at @ThingsExpo, Andrew Warfield, CTO and Co-Founder of Coho Data, will dis...
SYS-CON Events announced today that Fusion, a leading provider of cloud services, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Fusion, a leading provider of integrated cloud solutions to small, medium and large businesses, is the industry's single source for the cloud. Fusion's advanced, proprietary cloud service platform enables the integration of leading edge solutions in the cloud, including clou...
Most people haven’t heard the word, “gamification,” even though they probably, and perhaps unwittingly, participate in it every day. Gamification is “the process of adding games or game-like elements to something (as a task) so as to encourage participation.” Further, gamification is about bringing game mechanics – rules, constructs, processes, and methods – into the real world in an effort to engage people. In his session at @ThingsExpo, Robert Endo, owner and engagement manager of Intrepid D...
Eighty percent of a data scientist’s time is spent gathering and cleaning up data, and 80% of all data is unstructured and almost never analyzed. Cognitive computing, in combination with Big Data, is changing the equation by creating data reservoirs and using natural language processing to enable analysis of unstructured data sources. This is impacting every aspect of the analytics profession from how data is mined (and by whom) to how it is delivered. This is not some futuristic vision: it's ha...
WebRTC has had a real tough three or four years, and so have those working with it. Only a few short years ago, the development world were excited about WebRTC and proclaiming how awesome it was. You might have played with the technology a couple of years ago, only to find the extra infrastructure requirements were painful to implement and poorly documented. This probably left a bitter taste in your mouth, especially when things went wrong.
Learn how IoT, cloud, social networks and last but not least, humans, can be integrated into a seamless integration of cooperative organisms both cybernetic and biological. This has been enabled by recent advances in IoT device capabilities, messaging frameworks, presence and collaboration services, where devices can share information and make independent and human assisted decisions based upon social status from other entities. In his session at @ThingsExpo, Michael Heydt, founder of Seamless...
The IoT's basic concept of collecting data from as many sources possible to drive better decision making, create process innovation and realize additional revenue has been in use at large enterprises with deep pockets for decades. So what has changed? In his session at @ThingsExpo, Prasanna Sivaramakrishnan, Solutions Architect at Red Hat, discussed the impact commodity hardware, ubiquitous connectivity, and innovations in open source software are having on the connected universe of people, thi...
WebRTC: together these advances have created a perfect storm of technologies that are disrupting and transforming classic communications models and ecosystems. In his session at WebRTC Summit, Cary Bran, VP of Innovation and New Ventures at Plantronics and PLT Labs, provided an overview of this technological shift, including associated business and consumer communications impacts, and opportunities it may enable, complement or entirely transform.
There are so many tools and techniques for data analytics that even for a data scientist the choices, possible systems, and even the types of data can be daunting. In his session at @ThingsExpo, Chris Harrold, Global CTO for Big Data Solutions for EMC Corporation, showed how to perform a simple, but meaningful analysis of social sentiment data using freely available tools that take only minutes to download and install. Participants received the download information, scripts, and complete end-t...
For manufacturers, the Internet of Things (IoT) represents a jumping-off point for innovation, jobs, and revenue creation. But to adequately seize the opportunity, manufacturers must design devices that are interconnected, can continually sense their environment and process huge amounts of data. As a first step, manufacturers must embrace a new product development ecosystem in order to support these products.
Manufacturing connected IoT versions of traditional products requires more than multiple deep technology skills. It also requires a shift in mindset, to realize that connected, sensor-enabled “things” act more like services than what we usually think of as products. In his session at @ThingsExpo, David Friedman, CEO and co-founder of Ayla Networks, discussed how when sensors start generating detailed real-world data about products and how they’re being used, smart manufacturers can use the dat...
When it comes to IoT in the enterprise, namely the commercial building and hospitality markets, a benefit not getting the attention it deserves is energy efficiency, and IoT’s direct impact on a cleaner, greener environment when installed in smart buildings. Until now clean technology was offered piecemeal and led with point solutions that require significant systems integration to orchestrate and deploy. There didn't exist a 'top down' approach that can manage and monitor the way a Smart Buildi...