Click here to close now.



Welcome!

Java IoT Authors: Charlotte Spencer-Smith, Elizabeth White, Pat Romanski, SmartBear Blog, Kevin Jackson

Related Topics: Java IoT

Java IoT: Article

Non-Stop EJB Services

Deploy New Releases At Your Leisure

Service-oriented architectures (SOA) provide numerous benefits: reuse of business logic by many clients, location transparency of business logic, simplified unit testing, better scalability through distributed and load-balanced processing, and the composition of new services from existing services. Enterprise JavaBeans are a favorite platform on which to base service-oriented architectures because of their enterprise-class features.

As many new SOA applications are now developed on the J2EE platform, a problem arises: how to maintain 100% availability while deploying maintenance fixes and new versions of the services. Most application server vendors do not recommend hot deployment of applications in production; problems may occur with unloading classes, class loaders, and resources being used by existing deployments. Instead, the vendors recommend restarting the server or cluster of servers after a redeployment; however, the total time to redeploy, test, and restart a cluster of servers can be substantial. This downtime is unacceptable for many production sites due to loss of revenue and customer goodwill, and the mission-critical nature of the services.

A solution to this problem is to provide a mechanism for dynamically switching clients from a cluster of application servers running the old version to another cluster of application servers running the new version. We refer to this as dynamic cluster switching. This can be accomplished by some enhancements to commonly used J2EE patterns in conjunction with JMS-based messaging. The result is that most deployments of new releases can be made without interruption of services to the client.

Why bother with non-stop EJB services? We have all experienced the issues associated with EJB application upgrades and deployments, such as unexpected outages due to limited testing, poor fall-back strategies, and planned downtime for maintenance in the wee hours. For businesses selling commodity goods and services on the Web, downtime directly translates to lost revenue when customers can easily surf to other sites to buy the same product. With non-stop EJB services, you can reduce if not eliminate downtime while seamlessly rolling out new versions of your services. Imagine redeploying and upgrading your EJBs without impacting your clients and their Web sites, Web services, consumers, and business partners. If there are issues with the new software, fallback is low-risk and easy to accomplish. All of this occurs during peak traffic periods when using non-stop EJB services. This article describes how this was accomplished on a large consumer Web site handling over 15,000 concurrent sessions during peak times.

Dynamic Cluster Switching
This solution uses JMS messaging to control a plug-in used by clients of the EJB services. When it's time to release a new version of software, an alternate cluster of servers is deployed with the new code on the same hardware platform as the existing servers. A console or command-line program publishes a "cluster switch" message to the client plug-ins that subscribe to a JMS admin topic. The client plug-ins then start to open connections to the new cluster and allow connections to the old cluster to "die off" as sessions or connections are released. In a short time, all the client plug-ins are seamlessly connected to the new cluster. While this approach sounds simple at a high level, the implementation needs the confluence of many design patterns to be successful in practice.

A basic assumption to this solution is that the EJB services are deployed as their own J2EE application, independent of any Web components or J2EE application clients. In environments requiring performance, flexibility, scalability, and reliability, this is likely to be the case anyway.

Implementation
The implementation of the solution uses several common design patterns and enhancements in combination with JMS messaging. The particular patterns used are Service Locator, Business Delegate, Publish/Subscribe Messaging, and Observer. Figure 1 provides a graphical depiction of how the various components and message flows work together to perform the cluster switch.

 

Business Delegates are the client's proxy to the services. They use a Service Locator to obtain an EJBHome object and subsequently create a remote reference to an EJB. To be able to create Business Delegates that point to a different cluster of servers, the Service Locator needs to change its provider URL where it looks up EJBHome objects. This can be accomplished by having the Service Locator receive an update configuration message on a JMS topic that contains the new provider URL.

Clients using existing Business Delegates are not affected and their existing remote references to EJBs continue to operate. As the sessions for these clients expire, the remote references are released and their Business Delegates are garbage collected. New Business Delegates that were created after the Service Locator received the update configuration message are in effect pointing to the cluster identified by the updated provider URL. This is because their EJB handle was created from EJBHome objects looked up at the updated URL.

A JMS subscriber receives update configuration messages and passes them on to a MultiCaster. The MultiCaster becomes the sole point in the client VM for receiving these messages and distributing them to interested components. When the client code first loads, the JMS subscriber is initialized and components, such as the Service Locator, register with the MultiCaster for the type of messages they wish to receive.

A simple command-line program can be used to generate the JMS message that initiates the cluster switch, or this functionality could be part of a more comprehensive management and monitoring console application. The publish-subscribe paradigm is important here because any number of clients can be dynamically reconfigured through their connection to a JMS topic. This approach supports the management of a dynamic and ever-changing set of clients connected to the EJB servers.

Figure 2 is a class diagram of implementations of the various components and patterns. The source code for this article can be downloaded from www.sys-con.com/java/sourcec.cfm. The code should be considered fragments, intended only to illustrate the points in this article since it's missing important features such as logging, exception handling, and configurability. The more important classes will now be discussed in detail.

 

Service Locator
The Service Locator pattern, as described in Core J2EE Patterns, abstracts all JNDI usage, hides the details of initial context creation as well as EJBHome lookup, and caches EJBHomes for performance reasons. The Service Locator is usually made a singleton so that all clients can access the same EJBHome cache.

For the Service Locator to receive update configuration messages, it must register with the MultiCaster when first loaded. When a message is received, the Service Locator replaces its local copy of the provider URL and the initial context factory class with those obtained from the message. Subsequently, it invalidates its current cache of EJBHome objects. Then, the next time a Business Delegate asks for the EJBHome, it won't be found in the cache and will be looked up at the new provider URL. Once looked up, the new EJBHome object will be placed in the cache.

The implementation of the Service Locator provided in the source code is named ClientServiceLocator. As the name indicates, there may be other Service Locators in an application for use in other layers of the architecture (e.g., Services, Foundation, etc.).

Business Delegate (BD)
The Business Delegate pattern hides the details of connecting to and using an EJB. Typically each business method in an EJB has a corresponding method in the Business Delegate that delegates client invocations to the EJB. The Business Delegate catches all the exceptions that can result from communicating with an EJB and turns them into application-specific exceptions. It allows clients to use the services as if they were local, and is thus a client-side proxy for a service. Business delegates can also be used to cache frequently requested data and provide other similar performance improvements to the services.

In addition to the normal responsibilities ascribed to the Business Delegate, the following additional responsibilities are required to support continuous availability of services:
1.  The BD must automatically perform a client/server version compatibility check. The first time a remote reference is retrieved by a business delegate, the client version must be compared to the server version to ensure compatibility. If incompatible, the business delegate must return a specific exception on compatibility mismatch that can be caught by a client. The exception should be logged by the client in the form of an informative error message. This provides a quick indication to support personnel that the client view JAR file is out of date. Without this check, a serialization error will result if the client and server classes are incompatible, and the source of the error will not be obvious to support personnel.
2.  The BD provides a create() and release() method for use by the client. Typically the Business Delegate Factory invokes the create method so the client doesn't need to. The client should always call the release method, however, when finished with a Business Delegate. For Web component clients (servlets and JSP pages), assuming the BD has been placed in the session, this can be accomplished by catching HTTP session timeouts with the HTTPSessionBindingListener interface. The release method not only invokes remove() on the Business Delegate's EJB remote reference, but a BusinessDelegateReleasedMsg is sent to the MultiCaster. The MultiCaster in turn notifies objects that have registered to receive this event, notably the Business Delegate Factories. The use of this event by the Business Delegate Factory is described in the next section.

The above responsibilities are implemented in the BusinessDelegate base class and should be extended by each Business Delegate in an application. All the business methods of each Business Delegate subclass typically invoke the inherited getService method to obtain the remote reference. Rather than store a remote reference to an EJB, which is not guaranteed to be serializable by the EJB specification, BusinessDelegate stores the EJB Handle. getService() reconstitutes the remote reference from the EJB Handle on each invocation in case the Business Delegate has been serialized to another server in the cluster between invocations.

Business Delegate Factory
A Business Delegate Factory is used primarily because it provides the flexibility to hand out other implementations of the Business Delegates depending on the type of client. It also enables a total count to be kept of the number of Business Delegates of each type that have been handed out, as well as a running count of the current number of outstanding Business Delegates.

A subclass of BusinessDelegateFactory should be created for each Business Delegate in an application and a singleton should be created for it. The singleton should register with the MultiCaster to receive Business Delegate release messages for the corresponding Business Delegate type. The management of the counters and the reporting of the counts is all inherited from the BusinessDelegateFactory base class. The specific mechanism for reporting the counts is outside the scope of this article but could be reported by a JMX agent or published to a JMS topic.

MultiCaster
The MultiCaster is the central player in the implementation of the Observer pattern. Observers register with the MultiCaster, providing a filter implementation. When the MultiCaster is notified of an event, it applies all filters to it and notifies observers (subscribers) who have matching filters for the event.

The role of the MultiCaster is to deliver Business Delegate-released notifications to each subclass of BusinessDelegateFactory, as well as deliver update configuration messages to the Service Locator that was received on a JMS topic.

To receive notifications that a Business Delegate has been released, each subclass of BusinessDelegateFactory adds itself as an observer to the MultiCaster with a filter type of BusinessDelegateReleasedFilter. This filter type checks to see that the published object is of type BusinessDelegateReleasedMsg, and that the BD name in the message is the same as that with which the filter was constructed. This causes each BusinessDelegateFactory to receive release notifications only for the type of Business Delegates it creates.

To receive update configuration messages, the Service Locator adds itself as an observer to the MultiCaster with a filter type of UpdateServiceLocatorFilter. This filter type checks to see that the published object is of type ConfigureServiceLocatorMsg.

Two Levels of Client Redirection
The solution presented in this article redirects new clients of the services to the new version of the services. Existing clients using the old version are left to slowly bleed off as their sessions expire. A modification to the solution could be made to immediately switch all existing clients of the services to the new version as well. This would mean that every Business Delegate registering with the MultiCaster would receive Service Locator reconfigured messages, which the Service Locator would have to publish after reconfiguration was complete. This enhancement would also involve the additional complication of managing access to BD instances by multiple threads since the client thread using the BD would be distinct from the thread used by the MultiCaster to deliver event notifications to the BD.

Procedure for Cluster Switch
Now that the architecture of the solution that enables an application for dynamic cluster switching has been presented, we'll discuss the procedure for actually performing a switch. While the procedure might seem obvious, experience has shown the obvious approach is not necessarily the best.

Recall that one of the assumptions stated at the beginning of this article is that clients of the services are running in separate containers from the services. This means that those clients will be using a client view JAR file that has all the classes necessary to be a client of the services. Included in that client view JAR file are configuration resources that point the Business Delegates to a specific application server cluster (subsequently called the "primary" cluster). Assume the new version of the services is deployed to the "alternate" cluster and clients are switched there. It's not unreasonable to assume that at some point, days or weeks later, the client environment (such as a Web container) may need to be restarted. In that case, the clients will get their configuration from their existing client view JAR file, which is pointing to the primary cluster. But the latest services are running on the alternate cluster.

The procedure we've been using in production to solve this problem is as follows:

  1. Boot the alternate cluster.
  2. Deploy the old services to the alternate cluster.
  3. Run regression tests to verify the services are functioning as expected on the alternate cluster.
  4. . Issue a cluster switch to clients to point them to the alternate cluster.
  5. Enable trace-level logging in the old services in the primary cluster to ascertain when existing sessions have bled off the primary cluster. An admin console that is able to query and display the outstanding BD counts from the Business Delegate Factories can also be used as a cross check.
  6. Remove the old services from the primary cluster and deploy the new ones to it.
  7. Run regression tests against the new services on the primarycluster.
  8. Issue a cluster switch to clients to point them at the primary cluster.
  9. Monitor old services on the alternate cluster to determine when incoming traffic has stopped.
  10. Shut down the alternate cluster.
In summary, two switches are performed. New clients are first switched to the old code on the alternate cluster, and then subsequently new clients are switched to the new code on the primary cluster. With an HTTP session timeout of 15 minutes on an e-commerce-related site, the authors have found that letting the traffic bleed off after both cluster switches generally takes a total of three hours. Obviously this number may vary greatly depending on the nature of the services. Three hours is thus the total time that both application server clusters must be active, potentially straining resources such as memory, CPU, and connection pools if both clusters are run in a single hardware environment.

Service Compatibility
A caveat to dynamic cluster switching is that if a change in the public API of the services would cause a serialization or marshaling error between clients using old classes and the new services, the switch cannot be performed. Clients will have to shut down to upgrade their client view JAR files to the new version.

Minimizing the frequency of incompatible builds requires careful attention to application and object versioning. The Java Object Serialization Specification describes exactly what changes to a class make it incompatible with previous versions with regards to serialization. A technique that maximizes long term compatibility of class versions is to manually control their Stream Unique Identifier (SUID).

It's also recommended that a compatibility version number be added to the overall version number for the application. The version number must be made available to clients through the service API so that the BusinessDelegate base class can automatically retrieve it the first time a Business Delegate of each type is used. At that point, the version number in the client view JAR file is compared with the value returned from the service, and a difference in the compatibility number causes an exception to be thrown to the client. This mechanism can be seen in the BusinessDelegate code fragment in the source code.

Conclusion
This solution enables you to deploy new releases into production at leisure. A full regression test can be run on the newly deployed services before putting them into production. Care can be taken to assure that the deployment is perfect since there is no time pressure due to a production outage.

We have used the solution presented here to push a half-dozen new releases into production over the past six months at one of the top revenue-generating Web sites. At this particular site, 75% of the new releases of the services have been compatible builds for which this technique was successfully applied.

References

  • Alur, D., Crupi, J., and Malks, D. (2001). Core J2EE Patterns: Best Practices and Design Strategies. Prentice Hall PTR.

  • More Stories By Joe Bradley

    Joe Bradley has worked as a Senior Java Architect with Sun Software Services for the past 6 years. During his 18 year career he has focused primarily on architecture and development of distributed enterprise applications as well as scientific modeling and simulation applications.

    More Stories By David Raal

    David Raal is a software architect with experience in designing and building complex multitier distributed systems using Java, J2EE, CORBA, and C++. Recently, David has focused on creating e-commerce systems in the manufacturing, telecommunications, hospitality, and retail industries on the J2EE platform.

    Comments (1) View Comments

    Share your thoughts on this story.

    Add your comment
    You must be signed in to add a comment. Sign-in | Register

    In accordance with our Comment Policy, we encourage comments that are on topic, relevant and to-the-point. We will remove comments that include profanity, personal attacks, racial slurs, threats of violence, or other inappropriate material that violates our Terms and Conditions, and will block users who make repeated violations. We ask all readers to expect diversity of opinion and to treat one another with dignity and respect.


    Most Recent Comments
    John Jaster 12/26/03 05:34:50 PM EST

    with including sample code this article is pretty useless.

    @ThingsExpo Stories
    As enterprises work to take advantage of Big Data technologies, they frequently become distracted by product-level decisions. In most new Big Data builds this approach is completely counter-productive: it presupposes tools that may not be a fit for development teams, forces IT to take on the burden of evaluating and maintaining unfamiliar technology, and represents a major up-front expense. In his session at @BigDataExpo at @ThingsExpo, Andrew Warfield, CTO and Co-Founder of Coho Data, will dis...
    SYS-CON Events announced today that Fusion, a leading provider of cloud services, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Fusion, a leading provider of integrated cloud solutions to small, medium and large businesses, is the industry's single source for the cloud. Fusion's advanced, proprietary cloud service platform enables the integration of leading edge solutions in the cloud, including clou...
    With the Apple Watch making its way onto wrists all over the world, it’s only a matter of time before it becomes a staple in the workplace. In fact, Forrester reported that 68 percent of technology and business decision-makers characterize wearables as a top priority for 2015. Recognizing their business value early on, FinancialForce.com was the first to bring ERP to wearables, helping streamline communication across front and back office functions. In his session at @ThingsExpo, Kevin Roberts...
    SYS-CON Events announced today that Commvault, a global leader in enterprise data protection and information management, has been named “Bronze Sponsor” of SYS-CON's 18th International Cloud Expo, which will take place on June 7–9, 2016, at the Javits Center in New York City, NY, and the 19th International Cloud Expo, which will take place on November 1–3, 2016, at the Santa Clara Convention Center in Santa Clara, CA. Commvault is a leading provider of data protection and information management...
    SYS-CON Events announced today that Alert Logic, Inc., the leading provider of Security-as-a-Service solutions for the cloud, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. Alert Logic, Inc., provides Security-as-a-Service for on-premises, cloud, and hybrid infrastructures, delivering deep security insight and continuous protection for customers at a lower cost than traditional security solutions. Ful...
    SYS-CON Events announced today that VAI, a leading ERP software provider, will exhibit at SYS-CON's 18th International Cloud Expo®, which will take place on June 7-9, 2016, at the Javits Center in New York City, NY. VAI (Vormittag Associates, Inc.) is a leading independent mid-market ERP software developer renowned for its flexible solutions and ability to automate critical business functions for the distribution, manufacturing, specialty retail and service sectors. An IBM Premier Business Part...
    The cloud promises new levels of agility and cost-savings for Big Data, data warehousing and analytics. But it’s challenging to understand all the options – from IaaS and PaaS to newer services like HaaS (Hadoop as a Service) and BDaaS (Big Data as a Service). In her session at @BigDataExpo at @ThingsExpo, Hannah Smalltree, a director at Cazena, will provide an educational overview of emerging “as-a-service” options for Big Data in the cloud. This is critical background for IT and data profes...
    With an estimated 50 billion devices connected to the Internet by 2020, several industries will begin to expand their capabilities for retaining end point data at the edge to better utilize the range of data types and sheer volume of M2M data generated by the Internet of Things. In his session at @ThingsExpo, Don DeLoach, CEO and President of Infobright, will discuss the infrastructures businesses will need to implement to handle this explosion of data by providing specific use cases for filte...
    Fortunately, meaningful and tangible business cases for IoT are plentiful in a broad array of industries and vertical markets. These range from simple warranty cost reduction for capital intensive assets, to minimizing downtime for vital business tools, to creating feedback loops improving product design, to improving and enhancing enterprise customer experiences. All of these business cases, which will be briefly explored in this session, hinge on cost effectively extracting relevant data from ...
    SYS-CON Events announced today that Interoute, owner-operator of one of Europe's largest networks and a global cloud services platform, has been named “Bronze Sponsor” of SYS-CON's 18th Cloud Expo, which will take place on June 7-9, 2015 at the Javits Center in New York, New York. Interoute is the owner-operator of one of Europe's largest networks and a global cloud services platform which encompasses 12 data centers, 14 virtual data centers and 31 colocation centers, with connections to 195 ad...
    Most people haven’t heard the word, “gamification,” even though they probably, and perhaps unwittingly, participate in it every day. Gamification is “the process of adding games or game-like elements to something (as a task) so as to encourage participation.” Further, gamification is about bringing game mechanics – rules, constructs, processes, and methods – into the real world in an effort to engage people. In his session at @ThingsExpo, Robert Endo, owner and engagement manager of Intrepid D...
    Eighty percent of a data scientist’s time is spent gathering and cleaning up data, and 80% of all data is unstructured and almost never analyzed. Cognitive computing, in combination with Big Data, is changing the equation by creating data reservoirs and using natural language processing to enable analysis of unstructured data sources. This is impacting every aspect of the analytics profession from how data is mined (and by whom) to how it is delivered. This is not some futuristic vision: it's ha...
    WebRTC has had a real tough three or four years, and so have those working with it. Only a few short years ago, the development world were excited about WebRTC and proclaiming how awesome it was. You might have played with the technology a couple of years ago, only to find the extra infrastructure requirements were painful to implement and poorly documented. This probably left a bitter taste in your mouth, especially when things went wrong.
    Learn how IoT, cloud, social networks and last but not least, humans, can be integrated into a seamless integration of cooperative organisms both cybernetic and biological. This has been enabled by recent advances in IoT device capabilities, messaging frameworks, presence and collaboration services, where devices can share information and make independent and human assisted decisions based upon social status from other entities. In his session at @ThingsExpo, Michael Heydt, founder of Seamless...
    The IoT's basic concept of collecting data from as many sources possible to drive better decision making, create process innovation and realize additional revenue has been in use at large enterprises with deep pockets for decades. So what has changed? In his session at @ThingsExpo, Prasanna Sivaramakrishnan, Solutions Architect at Red Hat, discussed the impact commodity hardware, ubiquitous connectivity, and innovations in open source software are having on the connected universe of people, thi...
    WebRTC: together these advances have created a perfect storm of technologies that are disrupting and transforming classic communications models and ecosystems. In his session at WebRTC Summit, Cary Bran, VP of Innovation and New Ventures at Plantronics and PLT Labs, provided an overview of this technological shift, including associated business and consumer communications impacts, and opportunities it may enable, complement or entirely transform.
    There are so many tools and techniques for data analytics that even for a data scientist the choices, possible systems, and even the types of data can be daunting. In his session at @ThingsExpo, Chris Harrold, Global CTO for Big Data Solutions for EMC Corporation, showed how to perform a simple, but meaningful analysis of social sentiment data using freely available tools that take only minutes to download and install. Participants received the download information, scripts, and complete end-t...
    For manufacturers, the Internet of Things (IoT) represents a jumping-off point for innovation, jobs, and revenue creation. But to adequately seize the opportunity, manufacturers must design devices that are interconnected, can continually sense their environment and process huge amounts of data. As a first step, manufacturers must embrace a new product development ecosystem in order to support these products.
    Manufacturing connected IoT versions of traditional products requires more than multiple deep technology skills. It also requires a shift in mindset, to realize that connected, sensor-enabled “things” act more like services than what we usually think of as products. In his session at @ThingsExpo, David Friedman, CEO and co-founder of Ayla Networks, discussed how when sensors start generating detailed real-world data about products and how they’re being used, smart manufacturers can use the dat...
    When it comes to IoT in the enterprise, namely the commercial building and hospitality markets, a benefit not getting the attention it deserves is energy efficiency, and IoT’s direct impact on a cleaner, greener environment when installed in smart buildings. Until now clean technology was offered piecemeal and led with point solutions that require significant systems integration to orchestrate and deploy. There didn't exist a 'top down' approach that can manage and monitor the way a Smart Buildi...